Musa-Cpp-Lib-V2/lib/OS/OS_Win32.cpp

318 lines
10 KiB
C++

// #TODO: #OS_Win32
// [ ] #Thread cleanup: in `thread_deinit` is there any requirement to cleanup child threads?
// [ ] #Exception handling code in `Win32_Exception_Filter`
// [ ] #cpuid - enumerate CPUs and Thread count (current implementation doesn't work)
#if OS_WINDOWS
constexpr s64 FILETIME_TO_UNIX = 116444736000000000i64;
f64 GetUnixTimestamp () {
FILETIME fileTime;
GetSystemTimePreciseAsFileTime(&fileTime);
s64 ticks = ((s64)fileTime.dwHighDateTime << (s64)32) | (s64)fileTime.dwLowDateTime;
return (ticks - FILETIME_TO_UNIX) / (10.0 * 1000.0 * 1000.0);
}
s64 GetUnixTimestampNanoseconds () {
FILETIME fileTime;
GetSystemTimePreciseAsFileTime(&fileTime);
s64 ticks = ((s64)fileTime.dwHighDateTime << (s64)32)
| (s64)fileTime.dwLowDateTime; // in 100ns ticks
s64 unix_time = (ticks - FILETIME_TO_UNIX); // in 100ns ticks
s64 unix_time_nanoseconds = unix_time * 100;
return unix_time_nanoseconds;
}
#endif
struct OS_System_Info {
s32 logical_processor_count;
s32 physical_core_count;
s32 primary_core_count;
s32 secondary_core_count; // Any weaker or "Efficiency" cores.
u64 page_size;
u64 large_page_size;
u64 allocation_granularity;
string machine_name;
};
struct OS_Process_Info {
u32 process_id;
b32 large_pages_allowed;
string binary_path;
string working_path;
string user_program_data_path;
Array<string> module_load_paths;
Array<string> environment_paths;
};
struct OS_State_Win32 {
Arena* arena;
OS_System_Info system_info;
OS_Process_Info process_info;
};
global OS_State_Win32 os_state_w32;
internal b32 win32_g_is_quiet = 0; // No console output
internal LONG WINAPI Win32_Exception_Filter (EXCEPTION_POINTERS* exception_ptrs) {
if (win32_g_is_quiet) { ExitProcess(1); }
local_persist volatile LONG first = 0;
if(InterlockedCompareExchange(&first, 1, 0) != 0)
{ // prevent failures in other threads to popup same message box
// this handler just shows first thread that crashes
// we are terminating afterwards anyway
for (;;) Sleep(1000);
}
// #Exception handling code (TODO)
return 0;
}
// internal void Main_Entry_Point (int argc, WCHAR **argv);
internal void Win32_Entry_Point (int argc, WCHAR **argv) {
// Timed_Block_Print("Win32_Entry_Point");
// See: w32_entry_point_caller(); (raddebugger)
SetUnhandledExceptionFilter(&Win32_Exception_Filter);
SYSTEM_INFO sysinfo = {0};
GetSystemInfo(&sysinfo);
// Try to allow large pages if we can.
// b32 large_pages_allowed = 0;
// {
// HANDLE token;
// if(OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token))
// {
// LUID luid;
// if(LookupPrivilegeValue(0, SE_LOCK_MEMORY_NAME, &luid))
// {
// TOKEN_PRIVILEGES priv;
// priv.PrivilegeCount = 1;
// priv.Privileges[0].Luid = luid;
// priv.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
// large_pages_allowed = !!AdjustTokenPrivileges(token, 0, &priv, sizeof(priv), 0, 0);
// }
// CloseHandle(token);
// }
// }
push_arena(get_thread_context()->arena);
{ OS_System_Info* info = &os_state_w32.system_info;
info->logical_processor_count = (s32)sysinfo.dwNumberOfProcessors;
info->page_size = sysinfo.dwPageSize;
info->large_page_size = GetLargePageMinimum();
info->allocation_granularity = sysinfo.dwAllocationGranularity;
}
{ OS_Process_Info* info = &os_state_w32.process_info;
info->large_pages_allowed = false;
info->process_id = GetCurrentProcessId();
}
// #cpuid
/*{ OS_System_Info* info = &os_state_w32.system_info;
// [ ] Extract input args
u32 length;
GetLogicalProcessorInformationEx(RelationProcessorCore, nullptr, (PDWORD)&length);
u8* cpu_information_buffer = NewArray<u8>(length);
GetLogicalProcessorInformationEx(RelationProcessorCore, // *sigh*
(PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX)cpu_information_buffer, (PDWORD)&length);
u32 offset = 0;
u32 all_cpus_count = 0;
u32 max_performance = 0;
u32 performance_core_count = 0;
// u32 efficient_core_count;
while (offset < length) {
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX* cpu_information
= (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX*)(cpu_information_buffer + offset);
offset += cpu_information->Size;
u32 count_per_group_physical = 1;
u32 value = (u32)cpu_information->Processor.GroupMask->Mask;
u32 count_per_group = __popcnt(value); // logical
if (cpu_information->Relationship != RelationProcessorCore) continue;
if (cpu_information->Processor.EfficiencyClass > max_performance) {
max_performance = cpu_information->Processor.EfficiencyClass;
performance_core_count = count_per_group_physical;
} else if (cpu_information->Processor.EfficiencyClass == max_performance) {
performance_core_count += count_per_group_physical;
}
all_cpus_count += count_per_group;
}
info->physical_core_count = (s32)all_cpus_count;
info->primary_core_count = (s32)performance_core_count;
}
// info->secondary_core_count = ;
*/
{ OS_System_Info* info = &os_state_w32.system_info;
u8 buffer[MAX_COMPUTERNAME_LENGTH + 1] = {0};
DWORD size = MAX_COMPUTERNAME_LENGTH + 1;
if(GetComputerNameA((char*)buffer, &size)) {
string machine_name_temp = string(size, buffer);
info->machine_name = copy_string(machine_name_temp);
}
}
{ OS_Process_Info* info = &os_state_w32.process_info;
DWORD length = GetCurrentDirectoryW(0, 0);
// This can be freed later when we call temp_reset();
u16* memory = NewArray<u16>(get_temp_allocator(), length + 1);
length = GetCurrentDirectoryW(length + 1, (WCHAR*)memory);
info->working_path = wide_to_utf8(memory, length);
Assert(is_valid(info->working_path));
}
// [ ] Get Working directory (info->working_path)
// [ ] GetEnvironmentStringsW
temp_reset();
printf("Hello there!\n\n");
}
C_LINKAGE DWORD OS_Windows_Thread_Entry_Point (void* parameter) {
Thread* thread = (Thread*)parameter;
set_thread_context(thread->context);
DWORD result = (DWORD)thread->proc(thread);
return result;
}
// Individual Thread API
internal bool thread_init (Thread* thread, Thread_Proc proc, string thread_name="") {
Assert(thread != nullptr && proc != nullptr);
DWORD windows_thread_id = 0;
HANDLE windows_thread = CreateThread(nullptr, 0, OS_Windows_Thread_Entry_Point,
thread, CREATE_SUSPENDED, &windows_thread_id);
if (windows_thread == 0 || windows_thread == INVALID_HANDLE_VALUE) {
return false;
}
s64 this_thread_index = InterlockedIncrement(&next_thread_index);
// #NewContext
ExpandableArena* arena_ex = expandable_arena_new(Arena_Reserve::Size_64M, 16);
thread->context = New<Thread_Context>(get_allocator(arena_ex));
thread->context->temp = expandable_arena_new(Arena_Reserve::Size_2M, 16);
thread->context->arena = arena_ex;
thread->context->allocator = get_allocator(arena_ex);
thread->context->thread_idx = (s32)this_thread_index;
thread->context->thread_name = copy_string(thread_name);
thread->context->log_builder = new_string_builder(Arena_Reserve::Size_64M);
thread->os_thread.windows_thread = windows_thread;
thread->os_thread.windows_thread_id = windows_thread_id;
thread->proc = proc;
thread->index = this_thread_index;
return true;
}
internal void thread_deinit (Thread* thread) {
if (thread->os_thread.windows_thread) {
CloseHandle(thread->os_thread.windows_thread);
}
thread->os_thread.windows_thread = nullptr;
arena_delete(thread->context->temp);
arena_delete(thread->context->arena);
free_string_builder(thread->context->log_builder);
// memset(thread, 0xCD, sizeof(Thread);
}
internal void thread_start (Thread* thread) {
ResumeThread(thread->os_thread.windows_thread);
}
internal bool thread_is_done (Thread* thread, s32 milliseconds=0) {
Assert(milliseconds >= -1);
DWORD result = WaitForSingleObject(thread->os_thread.windows_thread, (DWORD)milliseconds);
return result != WAIT_TIMEOUT;
}
// #thread_primitives
internal void mutex_init (Mutex* mutex) {
InitializeCriticalSection(&mutex->csection);
}
internal void mutex_destroy (Mutex* mutex) {
DeleteCriticalSection(&mutex->csection);
}
internal void lock (Mutex* mutex) {
EnterCriticalSection(&mutex->csection);
}
internal void unlock (Mutex* mutex) {
LeaveCriticalSection(&mutex->csection);
}
internal void semaphore_init (Semaphore* sem, s32 initial_value) {
Assert(initial_value >= 0);
sem->event = CreateSemaphoreW(nullptr, initial_value, 0x7fffffff, nullptr);
}
internal void semaphore_destroy (Semaphore* sem) {
CloseHandle(sem->event);
}
internal void signal (Semaphore* sem) {
ReleaseSemaphore(sem->event, 1, nullptr);
}
internal Wait_For_Result wait_for (Semaphore* sem, s32 milliseconds) {
DWORD res = 0;
if (milliseconds < 0) {
res = WaitForSingleObject(sem->event, INFINITE);
} else {
res = WaitForSingleObject(sem->event, (u32)milliseconds);
}
Assert(res != WAIT_FAILED);
if (res == WAIT_OBJECT_0) return Wait_For_Result::SUCCESS;
if (res == WAIT_TIMEOUT) return Wait_For_Result::TIMEOUT;
return Wait_For_Result::ERROR;
}
internal void condition_variable_init (Condition_Variable* cv) {
InitializeConditionVariable(&cv->condition_variable);
}
internal void condition_variable_destroy (Condition_Variable* cv) {
// No action required.
}
internal void wait (Condition_Variable* cv, Mutex* mutex, s32 wait_time_ms) {
SleepConditionVariableCS(&cv->condition_variable, &mutex->csection, (DWORD)wait_time_ms);
}
internal void wake (Condition_Variable* cv) {
WakeConditionVariable(&cv->condition_variable);
}
internal void wake_all (Condition_Variable* cv) {
WakeAllConditionVariable(&cv->condition_variable);
}
// #window_creation
Window_Type create_window (string new_window_name) {
return 0;
}
// #TODO: #window_creation
// [ ] resize_window
// [ ] position_window
// [ ] toggle_fullscreen
// [ ] get_dimensions
// #TODO: #window_interaction (mouse/keyboard)
// [ ] get_mouse_pointer_position
// [ ] ... What APIs do I need for Keyboard