// #TODO: #OS_Win32 // [ ] #Thread cleanup: in `thread_deinit` is there any requirement to cleanup child threads? // [ ] #Exception handling code in `Win32_Exception_Filter` // [ ] #cpuid - enumerate CPUs and Thread count (current implementation doesn't work) #if OS_WINDOWS constexpr s64 FILETIME_TO_UNIX = 116444736000000000i64; f64 GetUnixTimestamp () { FILETIME fileTime; GetSystemTimePreciseAsFileTime(&fileTime); s64 ticks = ((s64)fileTime.dwHighDateTime << (s64)32) | (s64)fileTime.dwLowDateTime; return (ticks - FILETIME_TO_UNIX) / (10.0 * 1000.0 * 1000.0); } s64 GetUnixTimestampNanoseconds () { FILETIME fileTime; GetSystemTimePreciseAsFileTime(&fileTime); s64 ticks = ((s64)fileTime.dwHighDateTime << (s64)32) | (s64)fileTime.dwLowDateTime; // in 100ns ticks s64 unix_time = (ticks - FILETIME_TO_UNIX); // in 100ns ticks s64 unix_time_nanoseconds = unix_time * 100; return unix_time_nanoseconds; } #endif struct OS_System_Info { s32 logical_processor_count; s32 physical_core_count; s32 primary_core_count; s32 secondary_core_count; // Any weaker or "Efficiency" cores. u64 page_size; u64 large_page_size; u64 allocation_granularity; string machine_name; }; struct OS_Process_Info { u32 process_id; b32 large_pages_allowed; string binary_path; string working_path; string user_program_data_path; Array module_load_paths; Array environment_paths; }; struct OS_State_Win32 { Arena* arena; OS_System_Info system_info; OS_Process_Info process_info; }; global OS_State_Win32 os_state_w32; internal b32 win32_g_is_quiet = 0; // No console output internal LONG WINAPI Win32_Exception_Filter (EXCEPTION_POINTERS* exception_ptrs) { if (win32_g_is_quiet) { ExitProcess(1); } local_persist volatile LONG first = 0; if(InterlockedCompareExchange(&first, 1, 0) != 0) { // prevent failures in other threads to popup same message box // this handler just shows first thread that crashes // we are terminating afterwards anyway for (;;) Sleep(1000); } // #Exception handling code (TODO) return 0; } // internal void Main_Entry_Point (int argc, WCHAR **argv); internal void Win32_Entry_Point (int argc, WCHAR **argv) { // See: w32_entry_point_caller(); (raddebugger) SetUnhandledExceptionFilter(&Win32_Exception_Filter); SYSTEM_INFO sysinfo = {0}; GetSystemInfo(&sysinfo); // Try to allow large pages if we can. // b32 large_pages_allowed = 0; // { // HANDLE token; // if(OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token)) // { // LUID luid; // if(LookupPrivilegeValue(0, SE_LOCK_MEMORY_NAME, &luid)) // { // TOKEN_PRIVILEGES priv; // priv.PrivilegeCount = 1; // priv.Privileges[0].Luid = luid; // priv.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED; // large_pages_allowed = !!AdjustTokenPrivileges(token, 0, &priv, sizeof(priv), 0, 0); // } // CloseHandle(token); // } // } Bootstrap_Main_Thread_Context(); push_arena(get_thread_context()->arena); { OS_System_Info* info = &os_state_w32.system_info; info->logical_processor_count = (s32)sysinfo.dwNumberOfProcessors; info->page_size = sysinfo.dwPageSize; info->large_page_size = GetLargePageMinimum(); info->allocation_granularity = sysinfo.dwAllocationGranularity; } { OS_Process_Info* info = &os_state_w32.process_info; info->large_pages_allowed = false; info->process_id = GetCurrentProcessId(); } // #cpuid /*{ OS_System_Info* info = &os_state_w32.system_info; // [ ] Extract input args u32 length; GetLogicalProcessorInformationEx(RelationProcessorCore, nullptr, (PDWORD)&length); u8* cpu_information_buffer = NewArray(length); GetLogicalProcessorInformationEx(RelationProcessorCore, // *sigh* (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX)cpu_information_buffer, (PDWORD)&length); u32 offset = 0; u32 all_cpus_count = 0; u32 max_performance = 0; u32 performance_core_count = 0; // u32 efficient_core_count; while (offset < length) { SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX* cpu_information = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX*)(cpu_information_buffer + offset); offset += cpu_information->Size; u32 count_per_group_physical = 1; u32 value = (u32)cpu_information->Processor.GroupMask->Mask; u32 count_per_group = __popcnt(value); // logical if (cpu_information->Relationship != RelationProcessorCore) continue; if (cpu_information->Processor.EfficiencyClass > max_performance) { max_performance = cpu_information->Processor.EfficiencyClass; performance_core_count = count_per_group_physical; } else if (cpu_information->Processor.EfficiencyClass == max_performance) { performance_core_count += count_per_group_physical; } all_cpus_count += count_per_group; } info->physical_core_count = (s32)all_cpus_count; info->primary_core_count = (s32)performance_core_count; } // info->secondary_core_count = ; */ { OS_System_Info* info = &os_state_w32.system_info; u8 buffer[MAX_COMPUTERNAME_LENGTH + 1] = {0}; DWORD size = MAX_COMPUTERNAME_LENGTH + 1; if(GetComputerNameA((char*)buffer, &size)) { string machine_name_temp = string(size, buffer); info->machine_name = copy_string(machine_name_temp); } } { OS_Process_Info* info = &os_state_w32.process_info; DWORD length = GetCurrentDirectoryW(0, 0); // This can be freed later when we call temp_reset(); u16* memory = NewArray(get_temp_allocator(), length + 1); length = GetCurrentDirectoryW(length + 1, (WCHAR*)memory); info->working_path = wide_to_utf8(memory, length); Assert(is_valid(info->working_path)); } // [ ] Get Working directory (info->working_path) // [ ] GetEnvironmentStringsW // temp_reset(); printf("Hello there!\n\n"); } C_LINKAGE DWORD OS_Windows_Thread_Entry_Point (void* parameter) { Thread* thread = (Thread*)parameter; set_thread_context(thread->context); DWORD result = (DWORD)thread->proc(thread); return result; } // Individual Thread API internal bool thread_init (Thread* thread, Thread_Proc proc, string thread_name="") { Assert(thread != nullptr && proc != nullptr); DWORD windows_thread_id = 0; HANDLE windows_thread = CreateThread(nullptr, 0, OS_Windows_Thread_Entry_Point, thread, CREATE_SUSPENDED, &windows_thread_id); if (windows_thread == 0 || windows_thread == INVALID_HANDLE_VALUE) { return false; } s64 this_thread_index = InterlockedIncrement(&next_thread_index); ExpandableArena* arena_ex = expandable_arena_new(Arena_Reserve::Size_64M, 16); thread->context = New(get_allocator(arena_ex)); thread->context->temp = expandable_arena_new(Arena_Reserve::Size_2M, 16); thread->context->arena = arena_ex; thread->context->allocator = get_allocator(arena_ex); thread->context->thread_idx = (s32)this_thread_index; push_arena(arena_ex); thread->context->thread_name = copy_string(thread_name); thread->os_thread.windows_thread = windows_thread; thread->os_thread.windows_thread_id = windows_thread_id; thread->proc = proc; thread->index = this_thread_index; return true; } internal void thread_deinit (Thread* thread) { if (thread->os_thread.windows_thread) { CloseHandle(thread->os_thread.windows_thread); } thread->os_thread.windows_thread = nullptr; arena_delete(thread->context->temp); arena_delete(thread->context->arena); } internal void thread_start (Thread* thread) { ResumeThread(thread->os_thread.windows_thread); } internal bool thread_is_done (Thread* thread, s32 milliseconds=0) { Assert(milliseconds >= -1); DWORD result = WaitForSingleObject(thread->os_thread.windows_thread, (DWORD)milliseconds); return result != WAIT_TIMEOUT; } // #thread_primitives internal void mutex_init (Mutex* mutex) { InitializeCriticalSection(&mutex->csection); } internal void mutex_destroy (Mutex* mutex) { DeleteCriticalSection(&mutex->csection); } internal void lock (Mutex* mutex) { EnterCriticalSection(&mutex->csection); } internal void unlock (Mutex* mutex) { LeaveCriticalSection(&mutex->csection); } internal void semaphore_init (Semaphore* sem, s32 initial_value) { Assert(initial_value >= 0); sem->event = CreateSemaphoreW(nullptr, initial_value, 0x7fffffff, nullptr); } internal void semaphore_destroy (Semaphore* sem) { CloseHandle(sem->event); } internal void signal (Semaphore* sem) { ReleaseSemaphore(sem->event, 1, nullptr); } internal Wait_For_Result wait_for (Semaphore* sem, s32 milliseconds) { DWORD res = 0; if (milliseconds < 0) { res = WaitForSingleObject(sem->event, INFINITE); } else { res = WaitForSingleObject(sem->event, (u32)milliseconds); } Assert(res != WAIT_FAILED); if (res == WAIT_OBJECT_0) return Wait_For_Result::SUCCESS; if (res == WAIT_TIMEOUT) return Wait_For_Result::TIMEOUT; return Wait_For_Result::ERROR; } internal void condition_variable_init (Condition_Variable* cv) { InitializeConditionVariable(&cv->condition_variable); } internal void condition_variable_destroy (Condition_Variable* cv) { // No action required. } internal void wait (Condition_Variable* cv, Mutex* mutex, s32 wait_time_ms) { SleepConditionVariableCS(&cv->condition_variable, &mutex->csection, (DWORD)wait_time_ms); } internal void wake (Condition_Variable* cv) { WakeConditionVariable(&cv->condition_variable); } internal void wake_all (Condition_Variable* cv) { WakeAllConditionVariable(&cv->condition_variable); } // #window_creation Window_Type create_window (string new_window_name) { return 0; } // #TODO: #window_creation // [ ] resize_window // [ ] position_window // [ ] toggle_fullscreen // [ ] get_dimensions // #TODO: #window_interaction (mouse/keyboard) // [ ] get_mouse_pointer_position // [ ] ... What APIs do I need for Keyboard