Multimodal-CV-FW-USB-ADS1298R/ads1298.c

371 lines
13 KiB
C

/* Author: Musa Mahmood - JIIM, Inc.
* Date: 11/11/2023
* License: This is proprietary code and may not be used without express written permission.
*/
#include "ads1298.h"
#include "app_util_platform.h"
#include "nrf_delay.h"
#include "app_error.h"
#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"
#include "nrf_gpio.h"
#include "nrf_drv_gpiote.h"
#include <string.h>
//#include "usb_logging.h"
uint8_t ads1298_default_regs[] = {
ADS1298_REGDEFAULT_CONFIG1,
ADS1298_REGDEFAULT_CONFIG2,
ADS1298_REGDEFAULT_CONFIG3,
ADS1298_REGDEFAULT_LOFF,
ADS1298_REGDEFAULT_CH1SET,
ADS1298_REGDEFAULT_CH2SET,
ADS1298_REGDEFAULT_CH3SET,
ADS1298_REGDEFAULT_CH4SET,
ADS1298_REGDEFAULT_CH5SET,
ADS1298_REGDEFAULT_CH6SET,
ADS1298_REGDEFAULT_CH7SET,
ADS1298_REGDEFAULT_CH8SET,
ADS1298_REGDEFAULT_RLD_SENSP,
ADS1298_REGDEFAULT_RLD_SENSN,
ADS1298_REGDEFAULT_LOFF_SENSP,
ADS1298_REGDEFAULT_LOFF_SENSN,
ADS1298_REGDEFAULT_LOFF_FLIP,
ADS1298_REGDEFAULT_LOFF_STATP,
ADS1298_REGDEFAULT_LOFF_STATN,
ADS1298_REGDEFAULT_GPIO,
ADS1298_REGDEFAULT_PACE,
ADS1298_REGDEFAULT_RESP,
ADS1298_REGDEFAULT_CONFIG4,
ADS1298_REGDEFAULT_WCT1,
ADS1298_REGDEFAULT_WCT2
};
// SPI flags:
static volatile bool spi_xfer_done;
static uint8_t rx_buffer[27+2];
// SPI Instance:
static const nrf_drv_spi_t spi0 = NRF_DRV_SPI_INSTANCE(0);
// SPI Event Handler:
static void spi_event_handler(nrf_drv_spi_evt_t const *p_event, void *p_context)
{
spi_xfer_done = true;
#if ADS1298_LOG_DEBUG
NRF_LOG_DEBUG("SPI transfer completed.");
#endif
}
void ads1298_initialize(ble_exg_t *p_exg, ads1298_info_t *p_info) {
NRF_LOG_INFO("Initializing ADS1298...");
// 1. Power up the ADS1298:
ads1298_power_up();
#if ADS1298_LOG_DEBUG
NRF_LOG_FLUSH();
#endif
nrf_drv_spi_config_t spi_config;
memset(&spi_config, 0, sizeof(spi_config));
// 2. Initialize SPI
spi_config.bit_order = NRF_DRV_SPI_BIT_ORDER_MSB_FIRST;
spi_config.ss_pin = ADS1298_CS_PIN;
spi_config.miso_pin = ADS1298_MISO_PIN;
spi_config.mosi_pin = ADS1298_MOSI_PIN;
spi_config.sck_pin = ADS1298_SCK_PIN;
spi_config.frequency = NRF_DRV_SPI_FREQ_2M;
spi_config.irq_priority = APP_IRQ_PRIORITY_HIGHEST;
spi_config.mode = NRF_DRV_SPI_MODE_1;
spi_config.orc = 0x55;
APP_ERROR_CHECK(nrf_drv_spi_init(&spi0, &spi_config, spi_event_handler, NULL));
// 3. Stop read data continuous mode (rdatac)
ads1298_stop_rdatac();
#if ADS1298_LOG_DEBUG
NRF_LOG_FLUSH();
#endif
// 4. Init registers:
// Copy default registers into p_exg->ads1298_settings (first 25 bytes)
memset(p_exg->ads1298_settings, 0, ADS1298_SETTINGS_SIZE);
memcpy(p_exg->ads1298_settings, ads1298_default_regs, ADS1298_REGISTER_COUNT);
ads1298_init_default_registers();
#if ADS1298_LOG_DEBUG
NRF_LOG_FLUSH();
#endif
// 5. Soft start:
ads1298_soft_start_conversion();
// 6. Check ID: (sets lower 3 bits of ads1298_settings[25])
ads1298_check_id(p_exg, p_info);
// 7. Start read data continuous mode (rdatac):
ads1298_start_rdatac();
// 8. Place on standby mode:
ads1298_standby();
// 9. Set remainder of ads1298_settings[25]:
p_exg->ads1298_settings[25] |= 0x80; // 16-bit mode
// ads1298_settings[25] &= 0b10011111; // TODO: sets downsample to zero
#if ADS1298_LOG_DEBUG
NRF_LOG_FLUSH();
#endif
}
void ads1298_uninitialize(void) {
NRF_LOG_INFO("Uninitializing ADS1298...");
nrf_drv_spi_uninit(&spi0);
}
bool ads1298_check_id(ble_exg_t *p_exg, ads1298_info_t *p_info) {
bool device_found = false;
#if ADS1298_LOG_DEBUG
NRF_LOG_INFO("Checking ADS129xR? ID:");
#endif
uint8_t tx_buf[6] = {ADS1298_OPC_RREG|ADS1298_REGADDR_ID, 0x01, 0, 0, 0, 0};
uint8_t rx_buf[6] = {0,0,0,0,0,0};
spi_xfer_done = false;
APP_ERROR_CHECK(nrf_drv_spi_transfer(&spi0, tx_buf, 2, rx_buf, 6));
while(!spi_xfer_done) {
__WFE();
}
#if ADS1298_LOG_DEBUG
NRF_LOG_INFO("rx_buf[3] = 0x%X", rx_buf[3]);
NRF_LOG_INFO("rx_buf dump:");
NRF_LOG_HEXDUMP_INFO(rx_buf, 6);
#endif
// Check lower 3 bits 0x[...]..[???]
uint8_t nch_check = rx_buf[3] & 0x07; // 0x.....111
p_exg->ads1298_settings[25] |= nch_check;
p_info->nChs = 0;
if (nch_check == ADS129x_4CH_BITMASK) {
p_info->nChs = 4; // ADS1294
} else if (nch_check == ADS129x_6CH_BITMASK) {
p_info->nChs = 6; // ADS1296
} else if (nch_check == ADS129x_8CH_BITMASK) {
p_info->nChs = 8; // ADS1298
} else {
NRF_LOG_ERROR("Expected ADS129xX not detected! E0");
return false;
}
// Check middle bits 0x[...]10[...] < always should be 10
if ((rx_buf[3] & 0x10) != 0x10 || p_info->nChs == 0) {
NRF_LOG_ERROR("Expected ADS129xX not detected! E1");
return false;
}
// Check first three bits: 0x[???]..[...]
uint8_t r_ver_chk = rx_buf[3] & 0xE0;
if (r_ver_chk == ADS129x_DEVICE_FAMILY_BITMASK) {
p_info->name_len = sprintf(p_info->name, "ADS129%d", p_info->nChs);
NRF_LOG_INFO("%s detected! (name_len: %d)", p_info->name, p_info->name_len);
device_found = true;
p_exg->ads1298_settings[25] &= (~0x08);
} else if (r_ver_chk == ADS129xR_DEVICE_FAMILY_BITMASK) {
p_info->name_len = sprintf(p_info->name, "ADS129%dR", p_info->nChs);
NRF_LOG_INFO("%s detected! (name_len: %d)", p_info->name, p_info->name_len);
p_exg->ads1298_settings[25] |= 0x08;
device_found = true;
} else {
NRF_LOG_ERROR("Expected ADS129xX not detected! E2");
return false;
}
return device_found;
}
// chNumber = 1:8
__STATIC_INLINE bool ads1298_check_channel(ads1298_info_t *p_info, uint8_t chNumber) {
if (chNumber > p_info->nChs) return false;
if (chNumber > 8) {
NRF_LOG_INFO("[ads1298_check_channel] INVALID CHANNEL NUMBER: %d!", chNumber);
return false;
}
return !((p_info->registers[3 + chNumber] & 0x80) == 0x80);
}
void ads1298_update_active_chs(ads1298_info_t *p_info) {
p_info->active_chs = 0;
if (ads1298_check_channel(p_info, 1)) p_info->active_chs |= 0x80;
if (ads1298_check_channel(p_info, 2)) p_info->active_chs |= 0x40;
if (ads1298_check_channel(p_info, 3)) p_info->active_chs |= 0x20;
if (ads1298_check_channel(p_info, 4)) p_info->active_chs |= 0x10;
if (p_info->nChs == 4) return;
if (ads1298_check_channel(p_info, 5)) p_info->active_chs |= 0x08;
if (ads1298_check_channel(p_info, 6)) p_info->active_chs |= 0x04;
if (p_info->nChs == 6) return;
if (ads1298_check_channel(p_info, 7)) p_info->active_chs |= 0x02;
if (ads1298_check_channel(p_info, 8)) p_info->active_chs |= 0x01;
}
void ads1298_update_registers(ads1298_info_t *p_info) {
NRF_LOG_INFO("Updating ADS1298 registers...");
ads1298_update_active_chs(p_info);
uint8_t i = 0; // Register index
uint8_t tx_data[ADS1298_REGISTER_COUNT + 2]; // plus 2 for opcodes
uint8_t rx_data[ADS1298_REGISTER_COUNT + 2];
memset(tx_data, 0, ADS1298_REGISTER_COUNT + 2);
memset(rx_data, 0, ADS1298_REGISTER_COUNT + 2);
// Write Register Opcode | Register Address:
tx_data[0] = ADS1298_OPC_WREG | ADS1298_REGADDR_CONFIG1;
tx_data[1] = ADS1298_REGISTER_COUNT;
// Copy default register values:
memcpy(&tx_data[2], p_info->registers, ADS1298_REGISTER_COUNT);
// Transaction size = 2 + number of registers to write
spi_xfer_done = false;
APP_ERROR_CHECK(nrf_drv_spi_transfer(&spi0, tx_data, ADS1298_REGISTER_COUNT + 2, rx_data, ADS1298_REGISTER_COUNT + 2));
while (!spi_xfer_done)
{
__WFE();
}
#if ADS1298_LOG_DEBUG
NRF_LOG_INFO("[ADS1298] Registers updated!");
#endif
}
void ads1298_init_default_registers(void) {
NRF_LOG_INFO("Initializing ADS1298 registers...");
uint8_t i = 0; // Register index
uint8_t tx_data[ADS1298_REGISTER_COUNT + 2]; // plus 2 for opcodes
uint8_t rx_data[ADS1298_REGISTER_COUNT + 2];
memset(tx_data, 0, ADS1298_REGISTER_COUNT + 2);
memset(rx_data, 0, ADS1298_REGISTER_COUNT + 2);
// Write Register Opcode | Register Address:
tx_data[0] = ADS1298_OPC_WREG | ADS1298_REGADDR_CONFIG1;
tx_data[1] = ADS1298_REGISTER_COUNT;
// Copy default register values:
memcpy(&tx_data[2], ads1298_default_regs, ADS1298_REGISTER_COUNT);
// Transaction size = 2 + number of registers to write
spi_xfer_done = false;
APP_ERROR_CHECK(nrf_drv_spi_transfer(&spi0, tx_data, ADS1298_REGISTER_COUNT + 2, rx_data, ADS1298_REGISTER_COUNT + 2));
while (!spi_xfer_done)
{
__WFE();
}
#if ADS1298_LOG_DEBUG
NRF_LOG_INFO("[ADS1298] Registers initialized.");
#endif
}
// Power controls:
void ads1298_power_down(void) {
nrf_gpio_pin_clear(ADS1298_PWDN_PIN);
nrf_delay_ms(5);
}
void ads1298_power_up(void) {
nrf_gpio_pin_set(ADS1298_PWDN_PIN);
nrf_delay_ms(80);
}
// Standby/Wakeup controls:
void ads1298_wakeup(void) {
NRF_LOG_INFO("Waking up ADS1298...");
uint8_t cmd = ADS1298_OPC_WAKEUP;
uint8_t rx_buf;
spi_xfer_done = false;
APP_ERROR_CHECK(nrf_drv_spi_transfer(&spi0, &cmd, 1, &rx_buf, 1));
while (!spi_xfer_done)
{
__WFE();
}
}
void ads1298_standby(void) {
NRF_LOG_INFO("Placing ADS1298 in standby mode...");
uint8_t cmd = ADS1298_OPC_STANDBY;
uint8_t rx_buf;
spi_xfer_done = false;
APP_ERROR_CHECK(nrf_drv_spi_transfer(&spi0, &cmd, 1, &rx_buf, 1));
while (!spi_xfer_done)
{
__WFE();
}
}
// Start/stop conversions
void ads1298_soft_start_conversion(void) {
NRF_LOG_INFO("[ADS1298] Starting conversion...");
uint8_t cmd = ADS1298_OPC_START;
uint8_t rx_buf;
spi_xfer_done = false;
APP_ERROR_CHECK(nrf_drv_spi_transfer(&spi0, &cmd, 1, &rx_buf, 1));
while (!spi_xfer_done)
{
__WFE();
}
}
void ads1298_start_rdatac(void) {
NRF_LOG_INFO("[ADS1298] Starting Read Data Continuous Mode...");
uint8_t cmd = ADS1298_OPC_RDATAC;
uint8_t rx_buf;
spi_xfer_done = false;
APP_ERROR_CHECK(nrf_drv_spi_transfer(&spi0, &cmd, 1, &rx_buf, 1));
while (!spi_xfer_done)
{
__WFE();
}
}
void ads1298_stop_rdatac(void) {
NRF_LOG_INFO("[ADS1298] Stopping Read Data Continuous Mode...");
uint8_t cmd = ADS1298_OPC_SDATAC;
uint8_t rx_buf;
spi_xfer_done = false;
APP_ERROR_CHECK(nrf_drv_spi_transfer(&spi0, &cmd, 1, &rx_buf, 1));
while (!spi_xfer_done)
{
__WFE();
}
}
// __STATIC_INLINE uint8_t get_channel_count_from_settings(uint8_t settings) {
// uint8_t lower_bits = settings & 0x07;
// if (lower_bits == ADS129x_4CH_BITMASK) {
// return 4;
// } else if (lower_bits == ADS129x_6CH_BITMASK) {
// return 6;
// } else if (lower_bits == ADS129x_8CH_BITMASK) {
// return 8;
// }
// }
// TODO: Add option for 2 bytes (low resolution)
__STATIC_INLINE void copy_relevant_data(ble_exg_t *p_exg, uint8_t active_chs/*, bool hi_res*/) {
if ((active_chs & 0x80) == 0x80) memcpy(&p_exg->exg_ch1_buffer[p_exg->data_buffer_count], &rx_buffer[3], 3);
if ((active_chs & 0x40) == 0x40) memcpy(&p_exg->exg_ch2_buffer[p_exg->data_buffer_count], &rx_buffer[6], 3);
if ((active_chs & 0x20) == 0x20) memcpy(&p_exg->exg_ch3_buffer[p_exg->data_buffer_count], &rx_buffer[9], 3);
if ((active_chs & 0x10) == 0x10) memcpy(&p_exg->exg_ch4_buffer[p_exg->data_buffer_count], &rx_buffer[12], 3);
if ((active_chs & 0x08) == 0x08) memcpy(&p_exg->exg_ch5_buffer[p_exg->data_buffer_count], &rx_buffer[15], 3);
if ((active_chs & 0x04) == 0x04) memcpy(&p_exg->exg_ch6_buffer[p_exg->data_buffer_count], &rx_buffer[18], 3);
if ((active_chs & 0x02) == 0x02) memcpy(&p_exg->exg_ch7_buffer[p_exg->data_buffer_count], &rx_buffer[21], 3);
if ((active_chs & 0x01) == 0x01) memcpy(&p_exg->exg_ch8_buffer[p_exg->data_buffer_count], &rx_buffer[24], 3);
p_exg->data_buffer_count += 3;
}
// Buffer size depends on version (27 bytes for ADS1298, 21 for ADS1296, and 15 for ADS1294)
void ads1298_get_data(ble_exg_t *p_exg, uint8_t active_chs) {
spi_xfer_done = false;
memset(rx_buffer, 0, 27);
nrf_drv_spi_transfer(&spi0, rx_buffer, 27, rx_buffer, 27);
while (!spi_xfer_done) { __WFE(); }
copy_relevant_data(p_exg, active_chs);
}
void ads1296_get_data(ble_exg_t *p_exg, uint8_t active_chs) {
spi_xfer_done = false;
memset(rx_buffer, 0, 21);
nrf_drv_spi_transfer(&spi0, rx_buffer, 21, rx_buffer, 21);
while (!spi_xfer_done) { __WFE(); }
copy_relevant_data(p_exg, active_chs);
}
void ads1294_get_data(ble_exg_t *p_exg, uint8_t active_chs) {
spi_xfer_done = false;
memset(rx_buffer, 0, 15);
nrf_drv_spi_transfer(&spi0, rx_buffer, 15, rx_buffer, 15);
while (!spi_xfer_done) { __WFE(); }
// Check mode p_exg->ads1298_settings[26] b0
copy_relevant_data(p_exg, active_chs);
}