Compare commits

..

1 Commits

Author SHA1 Message Date
a1db776196 [WIP] Add ADS1298 testing code. 2025-04-09 07:11:48 -04:00
11 changed files with 346 additions and 689 deletions

280
ads1298.c
View File

@ -13,9 +13,15 @@
#include "nrf_gpio.h" #include "nrf_gpio.h"
#include "nrf_drv_gpiote.h" #include "nrf_drv_gpiote.h"
#include "custom_board.h" #include "base/usb_logging.h"
#if ADS1298 #include <string.h>
String create_string(char* data) {
s32 count = strlen(data);
String s = {count, data};
return s;
} // #MOVE.
uint8_t ads1298_default_regs[] = { uint8_t ads1298_default_regs[] = {
ADS1298_REGDEFAULT_CONFIG1, ADS1298_REGDEFAULT_CONFIG1,
@ -57,7 +63,7 @@ static void spi_event_handler(nrf_drv_spi_evt_t const *p_event, void *p_context)
{ {
spi_xfer_done = true; spi_xfer_done = true;
#if ADS1298_LOG_DEBUG #if ADS1298_LOG_DEBUG
NRF_LOG_INFO(" > SPI transfer completed."); JIIM_LOG(" > SPI transfer completed.");
#endif #endif
} }
@ -76,12 +82,10 @@ void ads1298_initialize(ads1298_info_t *p_info) {
spi_config.miso_pin = ADS1298_MISO_PIN; spi_config.miso_pin = ADS1298_MISO_PIN;
spi_config.mosi_pin = ADS1298_MOSI_PIN; spi_config.mosi_pin = ADS1298_MOSI_PIN;
spi_config.sck_pin = ADS1298_SCK_PIN; spi_config.sck_pin = ADS1298_SCK_PIN;
spi_config.frequency = NRF_DRV_SPI_FREQ_250K;
//spi_config.frequency = NRF_DRV_SPI_FREQ_500K; //spi_config.frequency = NRF_DRV_SPI_FREQ_500K;
//spi_config.frequency = NRF_DRV_SPI_FREQ_1M; spi_config.frequency = NRF_DRV_SPI_FREQ_1M;
//spi_config.frequency = NRF_DRV_SPI_FREQ_2M; //spi_config.frequency = NRF_DRV_SPI_FREQ_2M;
spi_config.irq_priority = APP_IRQ_PRIORITY_HIGH; spi_config.irq_priority = APP_IRQ_PRIORITY_HIGHEST;
//spi_config.irq_priority = APP_IRQ_PRIORITY_HIGHEST;
spi_config.mode = NRF_DRV_SPI_MODE_1; spi_config.mode = NRF_DRV_SPI_MODE_1;
spi_config.orc = 0x55; spi_config.orc = 0x55;
@ -111,56 +115,34 @@ void ads1298_initialize(ads1298_info_t *p_info) {
#if ADS1298_LOG_DEBUG #if ADS1298_LOG_DEBUG
NRF_LOG_FLUSH(); NRF_LOG_FLUSH();
#endif #endif
// 0xDF = see extended table
p_info->usb_buffer[0] = IC_ID_ADS1298;
} }
void ads1298_uninitialize(void) { void ads1298_uninitialize(void) {
NRF_LOG_INFO("Uninitializing ADS1298..."); JIIM_LOG("Uninitializing ADS1298...");
nrf_drv_spi_uninit(&spi0); nrf_drv_spi_uninit(&spi0);
} }
void ads1298_readback_registers(ads1298_info_t* p_info) {
// Copies into USB Buffer:
uint8_t registers_to_read = ADS1298_REGISTER_COUNT;
uint8_t tx_buf[ADS1298_REGISTER_COUNT + 2] = {0};
tx_buf[0] = ADS1298_OPC_RREG|ADS1298_REGADDR_ID;
tx_buf[1] = registers_to_read-1;
uint8_t rx_buf[ADS1298_REGISTER_COUNT + 2] = {0};
spi_xfer_done = false;
APP_ERROR_CHECK(nrf_drv_spi_transfer(&spi0, tx_buf, ADS1298_REGISTER_COUNT + 2, rx_buf, ADS1298_REGISTER_COUNT + 2));
while(!spi_xfer_done) { __WFE(); }
memcpy(p_info->registers, &rx_buf[2], ADS1298_REGISTER_COUNT);
NRF_LOG_INFO("Reading ADS1298 registers:");
NRF_LOG_HEXDUMP_INFO(&rx_buf[2], ADS1298_REGISTER_COUNT);
}
bool ads1298_check_id(ads1298_info_t *p_info) { bool ads1298_check_id(ads1298_info_t *p_info) {
bool device_found = false; bool device_found = false;
#if ADS1298_LOG_DEBUG #if ADS1298_LOG_DEBUG
NRF_LOG_INFO("Checking ADS129xR? ID:"); JIIM_LOG("Checking ADS129xR? ID:");
#endif #endif
uint8_t tx_buf[6] = {ADS1298_OPC_RREG|ADS1298_REGADDR_ID, 0x01, 0, 0, 0, 0};
uint8_t registers_to_read = 4;
// opcode1, registers to read minus 1
uint8_t tx_buf[6] = {ADS1298_OPC_RREG|ADS1298_REGADDR_ID, registers_to_read-1, 0, 0, 0, 0};
uint8_t rx_buf[6] = {0,0,0,0,0,0}; uint8_t rx_buf[6] = {0,0,0,0,0,0};
spi_xfer_done = false; spi_xfer_done = false;
APP_ERROR_CHECK(nrf_drv_spi_transfer(&spi0, tx_buf, 6, rx_buf, 6)); APP_ERROR_CHECK(nrf_drv_spi_transfer(&spi0, tx_buf, 2, rx_buf, 6));
while(!spi_xfer_done) { __WFE(); } while(!spi_xfer_done) {
uint8_t register_data = rx_buf[2]; __WFE();
memcpy(p_info->id_buffer, rx_buf, 6); }
#if ADS1298_LOG_DEBUG #if ADS1298_LOG_DEBUG
NRF_LOG_INFO("register_data[0] = 0x%X", register_data); JIIM_LOG("rx_buf[3] = 0x%X", rx_buf[3]);
NRF_LOG_INFO(">rx_buf dump:"); JIIM_LOG("rx_buf dump:");
NRF_LOG_INFO(">rx_buf[0:5] = 0x[%X %X %X %X %X]", rx_buf[0], rx_buf[1], rx_buf[2], rx_buf[3], rx_buf[4], rx_buf[5]); JIIM_LOG("rx_buf[0:5] = 0x%X%X%X%X%X", rx_buf[0], rx_buf[1], rx_buf[2], rx_buf[3], rx_buf[4], rx_buf[5]);
// NRF_LOG_HEXDUMP_INFO(rx_buf, 6); // NRF_LOG_HEXDUMP_INFO(rx_buf, 6);
#endif #endif
// Check lower 3 bits 0x[...]..[xxx] // Check lower 3 bits 0x[...]..[xxx]
uint8_t nch_check = register_data & 0x07; // 0x.....111 uint8_t nch_check = rx_buf[3] & 0x07; // 0x.....111
p_info->nChs = 0; p_info->nChs = 0;
if (nch_check == ADS129x_4CH_BITMASK) { if (nch_check == ADS129x_4CH_BITMASK) {
p_info->nChs = 4; // ADS1294 p_info->nChs = 4; // ADS1294
@ -169,27 +151,26 @@ bool ads1298_check_id(ads1298_info_t *p_info) {
} else if (nch_check == ADS129x_8CH_BITMASK) { } else if (nch_check == ADS129x_8CH_BITMASK) {
p_info->nChs = 8; // ADS1298 p_info->nChs = 8; // ADS1298
} else { } else {
NRF_LOG_INFO("[ERROR] Expected ADS129xX not detected! E0"); JIIM_LOG("[ERROR] Expected ADS129xX not detected! E0");
return false; return false;
} }
// Check middle bits 0x[...]10[...] < always should be 10 // Check middle bits 0x[...]10[...] < always should be 10
if ((register_data & 0x10) != 0x10 || p_info->nChs == 0) { if ((rx_buf[3] & 0x10) != 0x10 || p_info->nChs == 0) {
p_info->nChs = 8; JIIM_LOG("[ERROR] Expected ADS129xX not detected! E1");
NRF_LOG_INFO("[ERROR] Expected ADS129xX not detected! E1");
return false; return false;
} }
// Check first three bits: 0x[xxx]..[...] // Check first three bits: 0x[xxx]..[...]
uint8_t r_ver_chk = register_data & 0xE0; uint8_t r_ver_chk = rx_buf[3] & 0xE0;
if (r_ver_chk == ADS129x_DEVICE_FAMILY_BITMASK) { if (r_ver_chk == ADS129x_DEVICE_FAMILY_BITMASK) {
p_info->name_len = sprintf(p_info->name, "ADS129%d", p_info->nChs); p_info->name_len = sprintf(p_info->name, "ADS129%d", p_info->nChs);
NRF_LOG_INFO("%s detected! (name_len: %d)", p_info->name, p_info->name_len); JIIM_LOG("%s detected! (name_len: %d)", p_info->name, p_info->name_len);
device_found = true; device_found = true;
} else if (r_ver_chk == ADS129xR_DEVICE_FAMILY_BITMASK) { } else if (r_ver_chk == ADS129xR_DEVICE_FAMILY_BITMASK) {
p_info->name_len = sprintf(p_info->name, "ADS129%dR", p_info->nChs); p_info->name_len = sprintf(p_info->name, "ADS129%dR", p_info->nChs);
NRF_LOG_INFO("%s detected! (name_len: %d)", p_info->name, p_info->name_len); JIIM_LOG("%s detected! (name_len: %d)", p_info->name, p_info->name_len);
device_found = true; device_found = true;
} else { } else {
NRF_LOG_INFO("[ERROR] Expected ADS129xX not detected! E2"); JIIM_LOG("[ERROR] Expected ADS129xX not detected! E2");
return false; return false;
} }
@ -200,7 +181,7 @@ bool ads1298_check_id(ads1298_info_t *p_info) {
__STATIC_INLINE bool ads1298_check_channel(ads1298_info_t *p_info, uint8_t chNumber) { __STATIC_INLINE bool ads1298_check_channel(ads1298_info_t *p_info, uint8_t chNumber) {
if (chNumber > p_info->nChs) return false; if (chNumber > p_info->nChs) return false;
if (chNumber > 8) { if (chNumber > 8) {
NRF_LOG_INFO("[ads1298_check_channel] INVALID CHANNEL NUMBER: %d!", chNumber); JIIM_LOG("[ads1298_check_channel] INVALID CHANNEL NUMBER: %d!", chNumber);
return false; return false;
} }
return !((p_info->registers[3 + chNumber] & 0x80) == 0x80); return !((p_info->registers[3 + chNumber] & 0x80) == 0x80);
@ -220,31 +201,8 @@ void ads1298_update_active_chs(ads1298_info_t *p_info) {
if (ads1298_check_channel(p_info, 8)) p_info->active_chs |= 0x01; if (ads1298_check_channel(p_info, 8)) p_info->active_chs |= 0x01;
} }
static const uint8_t popcount_table[256] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
};
static inline uint8_t ads1298_channel_count(ads1298_info_t *p_info) {
return popcount_table[p_info->active_chs];
}
void ads1298_update_registers(ads1298_info_t *p_info) { void ads1298_update_registers(ads1298_info_t *p_info) {
NRF_LOG_INFO("Updating ADS1298 registers..."); JIIM_LOG("Updating ADS1298 registers...");
ads1298_update_active_chs(p_info); ads1298_update_active_chs(p_info);
uint8_t i = 0; // Register index uint8_t i = 0; // Register index
uint8_t tx_data[ADS1298_REGISTER_COUNT + 2]; // plus 2 for opcodes uint8_t tx_data[ADS1298_REGISTER_COUNT + 2]; // plus 2 for opcodes
@ -259,16 +217,17 @@ void ads1298_update_registers(ads1298_info_t *p_info) {
// Transaction size = 2 + number of registers to write // Transaction size = 2 + number of registers to write
spi_xfer_done = false; spi_xfer_done = false;
APP_ERROR_CHECK(nrf_drv_spi_transfer(&spi0, tx_data, ADS1298_REGISTER_COUNT + 2, rx_data, ADS1298_REGISTER_COUNT + 2)); APP_ERROR_CHECK(nrf_drv_spi_transfer(&spi0, tx_data, ADS1298_REGISTER_COUNT + 2, rx_data, ADS1298_REGISTER_COUNT + 2));
while (!spi_xfer_done) { __WFE(); } while (!spi_xfer_done)
{
__WFE();
}
#if ADS1298_LOG_DEBUG #if ADS1298_LOG_DEBUG
NRF_LOG_INFO("[ADS1298] Registers updated!"); JIIM_LOG("[ADS1298] Registers updated!");
#endif #endif
// #TODO: Readback registers?
} }
void ads1298_init_default_registers(void) { void ads1298_init_default_registers(void) {
NRF_LOG_INFO("Initializing ADS1298 registers..."); JIIM_LOG("Initializing ADS1298 registers...");
uint8_t i = 0; // Register index uint8_t i = 0; // Register index
uint8_t tx_data[ADS1298_REGISTER_COUNT + 2]; // plus 2 for opcodes uint8_t tx_data[ADS1298_REGISTER_COUNT + 2]; // plus 2 for opcodes
uint8_t rx_data[ADS1298_REGISTER_COUNT + 2]; uint8_t rx_data[ADS1298_REGISTER_COUNT + 2];
@ -287,7 +246,7 @@ void ads1298_init_default_registers(void) {
__WFE(); __WFE();
} }
#if ADS1298_LOG_DEBUG #if ADS1298_LOG_DEBUG
NRF_LOG_INFO("[ADS1298] Registers initialized."); JIIM_LOG("[ADS1298] Registers initialized.");
#endif #endif
} }
@ -298,14 +257,13 @@ void ads1298_power_down(void) {
} }
void ads1298_power_up(void) { void ads1298_power_up(void) {
nrf_delay_ms(100); // wait for power supplies to stabilize
nrf_gpio_pin_set(ADS1298_PWDN_PIN); nrf_gpio_pin_set(ADS1298_PWDN_PIN);
nrf_delay_ms(100); nrf_delay_ms(80);
} }
// Standby/Wakeup controls: // Standby/Wakeup controls:
void ads1298_wakeup(void) { void ads1298_wakeup(void) {
NRF_LOG_INFO("Waking up ADS1298..."); JIIM_LOG("Waking up ADS1298...");
uint8_t cmd = ADS1298_OPC_WAKEUP; uint8_t cmd = ADS1298_OPC_WAKEUP;
uint8_t rx_buf; uint8_t rx_buf;
spi_xfer_done = false; spi_xfer_done = false;
@ -317,7 +275,7 @@ void ads1298_wakeup(void) {
} }
void ads1298_standby(void) { void ads1298_standby(void) {
NRF_LOG_INFO("Placing ADS1298 in standby mode..."); JIIM_LOG("Placing ADS1298 in standby mode...");
uint8_t cmd = ADS1298_OPC_STANDBY; uint8_t cmd = ADS1298_OPC_STANDBY;
uint8_t rx_buf; uint8_t rx_buf;
spi_xfer_done = false; spi_xfer_done = false;
@ -330,7 +288,7 @@ void ads1298_standby(void) {
// Start/stop conversions // Start/stop conversions
void ads1298_soft_start_conversion(void) { void ads1298_soft_start_conversion(void) {
NRF_LOG_INFO("[ADS1298] Starting conversion..."); JIIM_LOG("[ADS1298] Starting conversion...");
uint8_t cmd = ADS1298_OPC_START; uint8_t cmd = ADS1298_OPC_START;
uint8_t rx_buf; uint8_t rx_buf;
spi_xfer_done = false; spi_xfer_done = false;
@ -342,7 +300,7 @@ void ads1298_soft_start_conversion(void) {
} }
void ads1298_start_rdatac(void) { void ads1298_start_rdatac(void) {
NRF_LOG_INFO("[ADS1298] Starting Read Data Continuous Mode..."); JIIM_LOG("[ADS1298] Starting Read Data Continuous Mode...");
uint8_t cmd = ADS1298_OPC_RDATAC; uint8_t cmd = ADS1298_OPC_RDATAC;
uint8_t rx_buf; uint8_t rx_buf;
spi_xfer_done = false; spi_xfer_done = false;
@ -354,7 +312,7 @@ void ads1298_start_rdatac(void) {
} }
void ads1298_stop_rdatac(void) { void ads1298_stop_rdatac(void) {
NRF_LOG_INFO("[ADS1298] Stopping Read Data Continuous Mode..."); JIIM_LOG("[ADS1298] Stopping Read Data Continuous Mode...");
uint8_t cmd = ADS1298_OPC_SDATAC; uint8_t cmd = ADS1298_OPC_SDATAC;
uint8_t rx_buf; uint8_t rx_buf;
spi_xfer_done = false; spi_xfer_done = false;
@ -376,153 +334,43 @@ void ads1298_stop_rdatac(void) {
// } // }
// } // }
uint16_t ads1298_sampling_rate(ads1298_info_t* p_info) { // TODO: Add option for 2 bytes (low resolution)
// Check if we're in high precision or low power mode. /*
// We default to high precision. If LP, just div2. __STATIC_INLINE void copy_relevant_data(ble_exg_t *p_exg, uint8_t active_chs) {
uint16_t sampling_rate; if ((active_chs & 0x80) == 0x80) memcpy(&p_exg->exg_ch1_buffer[p_exg->data_buffer_count], &rx_buffer[3], 3);
switch (p_info->registers[0] & 0x07) { if ((active_chs & 0x40) == 0x40) memcpy(&p_exg->exg_ch2_buffer[p_exg->data_buffer_count], &rx_buffer[6], 3);
case 0: if ((active_chs & 0x20) == 0x20) memcpy(&p_exg->exg_ch3_buffer[p_exg->data_buffer_count], &rx_buffer[9], 3);
sampling_rate = 32000; if ((active_chs & 0x10) == 0x10) memcpy(&p_exg->exg_ch4_buffer[p_exg->data_buffer_count], &rx_buffer[12], 3);
case 1: if ((active_chs & 0x08) == 0x08) memcpy(&p_exg->exg_ch5_buffer[p_exg->data_buffer_count], &rx_buffer[15], 3);
sampling_rate = 16000; if ((active_chs & 0x04) == 0x04) memcpy(&p_exg->exg_ch6_buffer[p_exg->data_buffer_count], &rx_buffer[18], 3);
case 2: if ((active_chs & 0x02) == 0x02) memcpy(&p_exg->exg_ch7_buffer[p_exg->data_buffer_count], &rx_buffer[21], 3);
sampling_rate = 8000; if ((active_chs & 0x01) == 0x01) memcpy(&p_exg->exg_ch8_buffer[p_exg->data_buffer_count], &rx_buffer[24], 3);
case 3: p_exg->data_buffer_count += 3;
sampling_rate = 4000;
case 4:
sampling_rate = 2000;
case 5:
sampling_rate = 1000;
case 6:
sampling_rate = 500;
default:
sampling_rate = 500;
}
if (p_info->registers[0] & 0x80) {
sampling_rate /= sampling_rate;
}
return sampling_rate;
}
void ads1298_set_data_buffer_length(ads1298_info_t* p_info) {
uint16_t sampling_rate = ads1298_sampling_rate(p_info);
// Will depend not on sampling rate but on number of active channels
// #NOTE: Will need to update registers first.
uint8_t channel_count = ads1298_channel_count(p_info);
switch (channel_count) {
case 1: // Recall the max count is 64
p_info->usb_buffer_size_max = (3 * 20) + ADS1298_PACKET_OFFSET;
break;
case 2:
p_info->usb_buffer_size_max = (3 * 20) + ADS1298_PACKET_OFFSET;
break;
case 3:
p_info->usb_buffer_size_max = (3 * 18) + ADS1298_PACKET_OFFSET;
break;
case 4:
p_info->usb_buffer_size_max = (3 * 20) + ADS1298_PACKET_OFFSET;
break;
case 5:
p_info->usb_buffer_size_max = (3 * 20) + ADS1298_PACKET_OFFSET;
break;
case 6:
p_info->usb_buffer_size_max = (3 * 18) + ADS1298_PACKET_OFFSET;
break;
case 7:
p_info->usb_buffer_size_max = (3 * 14) + ADS1298_PACKET_OFFSET;
break;
case 8:
p_info->usb_buffer_size_max = (3 * 16) + ADS1298_PACKET_OFFSET;
break;
default:
p_info->usb_buffer_size_max = (3 * 16) + ADS1298_PACKET_OFFSET;
// This should never happen!
break;
}
NRF_LOG_INFO("[ADS129x] Sampling rate is %d", sampling_rate);
NRF_LOG_INFO("[ADS129x] p_info->nChs is %d", p_info->nChs);
NRF_LOG_INFO("[ADS129x] Channel count is %d, active_channels: 0x%X", channel_count, p_info->active_chs);
NRF_LOG_INFO("[ADS129x] p_info->usb_buffer_size_max is %d", p_info->usb_buffer_size_max);
}
__STATIC_INLINE void copy_relevant_data(ads1298_info_t* p_info) {
if ((p_info->active_chs & 0x80) == 0x80) {
memcpy(&p_info->usb_buffer[p_info->usb_buffer_count], &rx_buffer[3], 3);
p_info->usb_buffer_count += 3;
}
if ((p_info->active_chs & 0x40) == 0x40) {
memcpy(&p_info->usb_buffer[p_info->usb_buffer_count], &rx_buffer[6], 3);
p_info->usb_buffer_count += 3;
}
if ((p_info->active_chs & 0x20) == 0x20) {
memcpy(&p_info->usb_buffer[p_info->usb_buffer_count], &rx_buffer[9], 3);
p_info->usb_buffer_count += 3;
}
if ((p_info->active_chs & 0x10) == 0x10) {
memcpy(&p_info->usb_buffer[p_info->usb_buffer_count], &rx_buffer[12], 3);
p_info->usb_buffer_count += 3;
}
if ((p_info->active_chs & 0x08) == 0x08) {
memcpy(&p_info->usb_buffer[p_info->usb_buffer_count], &rx_buffer[15], 3);
p_info->usb_buffer_count += 3;
}
if ((p_info->active_chs & 0x04) == 0x04) {
memcpy(&p_info->usb_buffer[p_info->usb_buffer_count], &rx_buffer[18], 3);
p_info->usb_buffer_count += 3;
}
if ((p_info->active_chs & 0x02) == 0x02) {
memcpy(&p_info->usb_buffer[p_info->usb_buffer_count], &rx_buffer[21], 3);
p_info->usb_buffer_count += 3;
}
if ((p_info->active_chs & 0x01) == 0x01) {
memcpy(&p_info->usb_buffer[p_info->usb_buffer_count], &rx_buffer[24], 3);
p_info->usb_buffer_count += 3;
}
}
void ads1298_get_data_fast(ads1298_info_t* p_info) {
spi_xfer_done = false;
// necessary?
memset(rx_buffer, 0, 27);
nrf_drv_spi_transfer(&spi0, rx_buffer, 27, rx_buffer, 27);
while (!spi_xfer_done) { __WFE(); }
memcpy(&p_info->usb_buffer[p_info->usb_buffer_count], &rx_buffer[3], 8 * 3);
p_info->usb_buffer_count += 3 * 8;
} }
// Buffer size depends on version (27 bytes for ADS1298, 21 for ADS1296, and 15 for ADS1294) // Buffer size depends on version (27 bytes for ADS1298, 21 for ADS1296, and 15 for ADS1294)
void ads1298_get_data(ads1298_info_t* p_info) { void ads1298_get_data(ble_exg_t *p_exg, uint8_t active_chs) {
spi_xfer_done = false; spi_xfer_done = false;
// necessary?
memset(rx_buffer, 0, 27); memset(rx_buffer, 0, 27);
nrf_drv_spi_transfer(&spi0, rx_buffer, 27, rx_buffer, 27); nrf_drv_spi_transfer(&spi0, rx_buffer, 27, rx_buffer, 27);
while (!spi_xfer_done) { __WFE(); } while (!spi_xfer_done) { __WFE(); }
copy_relevant_data(p_info); copy_relevant_data(p_exg, active_chs);
} }
void ads1296_get_data(ads1298_info_t* p_info) { void ads1296_get_data(ble_exg_t *p_exg, uint8_t active_chs) {
spi_xfer_done = false; spi_xfer_done = false;
memset(rx_buffer, 0, 21); memset(rx_buffer, 0, 21);
nrf_drv_spi_transfer(&spi0, rx_buffer, 21, rx_buffer, 21); nrf_drv_spi_transfer(&spi0, rx_buffer, 21, rx_buffer, 21);
while (!spi_xfer_done) { __WFE(); } while (!spi_xfer_done) { __WFE(); }
copy_relevant_data(p_info); copy_relevant_data(p_exg, active_chs);
} }
void ads1294_get_data(ads1298_info_t* p_info) { void ads1294_get_data(ble_exg_t *p_exg, uint8_t active_chs) {
spi_xfer_done = false; spi_xfer_done = false;
memset(rx_buffer, 0, 15); memset(rx_buffer, 0, 15);
nrf_drv_spi_transfer(&spi0, rx_buffer, 15, rx_buffer, 15); nrf_drv_spi_transfer(&spi0, rx_buffer, 15, rx_buffer, 15);
while (!spi_xfer_done) { __WFE(); } while (!spi_xfer_done) { __WFE(); }
// Check mode p_exg->ads1298_settings[26] b0 // Check mode p_exg->ads1298_settings[26] b0
copy_relevant_data(p_info); copy_relevant_data(p_exg, active_chs);
} }
*/
#endif // ADS1298

View File

@ -4,14 +4,19 @@
#include <stdint.h> #include <stdint.h>
#include "nrf_drv_spi.h" #include "nrf_drv_spi.h"
#include "custom_board.h"
// Debug flag for logging: // Debug flag for logging:
#define ADS1298_LOG_DEBUG 0 #define ADS1298_LOG_DEBUG 1
// Testing with nRF52840-DK:
#define ADS1298_DRDY_PIN 11
#define ADS1298_MISO_PIN 12
#define ADS1298_SCK_PIN 13
#define ADS1298_CS_PIN 14
#define ADS1298_PWDN_PIN 15
#define ADS1298_MOSI_PIN 16
// Number of WRITABLE registers (Not inc. ID register) // Number of WRITABLE registers (Not inc. ID register)
#define ADS1298_REGISTER_COUNT 25 #define ADS1298_REGISTER_COUNT 25
#define ADS1298_PACKET_OFFSET 2 // [device id][serial id][..data]
/** REGISTER ADDRESSES **/ /** REGISTER ADDRESSES **/
#define ADS1298_REGADDR_ID 0x00 #define ADS1298_REGADDR_ID 0x00
@ -65,19 +70,19 @@
#define ADS129x_8CH_BITMASK 0x02 // 0x[...]10[010] #define ADS129x_8CH_BITMASK 0x02 // 0x[...]10[010]
/** DEFAULT REGISTER VALUES **/ /** DEFAULT REGISTER VALUES **/
// //#define ADS1298_REGDEFAULT_CONFIG1 0x05 // Low power mode, Daisy-chain mode, clk output disabled, LP: 250 SPS
#define ADS1298_REGDEFAULT_CONFIG1 0xC5 // High-res mode, Multiple readback mode, clk output disabled, LP: 250 SPS #define ADS1298_REGDEFAULT_CONFIG1 0x46 // Low power mode, Multiple readback mode, clk output disabled, LP: 250 SPS
#define ADS1298_REGDEFAULT_CONFIG2 0x00 // Test signals #define ADS1298_REGDEFAULT_CONFIG2 0x00 // Test signals
#define ADS1298_REGDEFAULT_CONFIG3 0xCE // #define ADS1298_REGDEFAULT_CONFIG3 0x40 //
#define ADS1298_REGDEFAULT_LOFF 0x00 #define ADS1298_REGDEFAULT_LOFF 0x00
#define ADS1298_REGDEFAULT_CH1SET 0x81 // Input Short (for startup) #define ADS1298_REGDEFAULT_CH1SET 0x00
#define ADS1298_REGDEFAULT_CH2SET 0x81 // Input Short (for startup) #define ADS1298_REGDEFAULT_CH2SET 0x00
#define ADS1298_REGDEFAULT_CH3SET 0x81 // Input Short (for startup) #define ADS1298_REGDEFAULT_CH3SET 0x00
#define ADS1298_REGDEFAULT_CH4SET 0x81 // Input Short (for startup) #define ADS1298_REGDEFAULT_CH4SET 0x00
#define ADS1298_REGDEFAULT_CH5SET 0x81 // Input Short (for startup) #define ADS1298_REGDEFAULT_CH5SET 0x00
#define ADS1298_REGDEFAULT_CH6SET 0x81 // Input Short (for startup) #define ADS1298_REGDEFAULT_CH6SET 0x00
#define ADS1298_REGDEFAULT_CH7SET 0x81 // Input Short (for startup) #define ADS1298_REGDEFAULT_CH7SET 0x00
#define ADS1298_REGDEFAULT_CH8SET 0x81 // Input Short (for startup) #define ADS1298_REGDEFAULT_CH8SET 0x00
#define ADS1298_REGDEFAULT_RLD_SENSP 0x00 #define ADS1298_REGDEFAULT_RLD_SENSP 0x00
#define ADS1298_REGDEFAULT_RLD_SENSN 0x00 #define ADS1298_REGDEFAULT_RLD_SENSN 0x00
#define ADS1298_REGDEFAULT_LOFF_SENSP 0x00 #define ADS1298_REGDEFAULT_LOFF_SENSP 0x00
@ -95,8 +100,6 @@
#define ADS1298_BUFFER_SIZE 64 #define ADS1298_BUFFER_SIZE 64
#define ADS1298_SETTINGS_SIZE 26 #define ADS1298_SETTINGS_SIZE 26
#define USBD_MAX_SIZE 64
typedef struct { typedef struct {
uint8_t nChs; // 4, 6, or 8 channels depending on variant. uint8_t nChs; // 4, 6, or 8 channels depending on variant.
uint8_t state; // Powered on or off! uint8_t state; // Powered on or off!
@ -106,30 +109,19 @@ typedef struct {
uint8_t active_chs; uint8_t active_chs;
uint8_t registers[ADS1298_REGISTER_COUNT]; uint8_t registers[ADS1298_REGISTER_COUNT];
char name[12]; char name[12];
uint8_t id_buffer[6];
char usb_buffer[USBD_MAX_SIZE];
uint8_t usb_buffer_count;
uint8_t usb_buffer_size_max;
#if ADS1298_STATS
uint32_t drdy_trigger_count;
uint32_t seconds_elapsed;
uint32_t bytes_sent_usb;
#endif
} ads1298_info_t; } ads1298_info_t;
/** FUNCTION PROTOTYPES **/ /** FUNCTION PROTOTYPES **/
void ads1298_initialize(ads1298_info_t* p_info); void ads1298_initialize(ads1298_info_t *p_info);
void ads1298_uninitialize(void); void ads1298_uninitialize(void);
bool ads1298_check_id(ads1298_info_t* p_info); bool ads1298_check_id(ads1298_info_t *p_info);
void ads1298_update_registers(ads1298_info_t* p_info); void ads1298_update_registers(ads1298_info_t *p_info);
void ads1298_init_default_registers(void); void ads1298_init_default_registers(void);
void ads1298_readback_registers(ads1298_info_t* p_info);
void ads1298_power_down(void); void ads1298_power_down(void);
void ads1298_power_up(void); void ads1298_power_up(void);
@ -144,15 +136,10 @@ void ads1298_start_rdatac(void);
void ads1298_stop_rdatac(void); void ads1298_stop_rdatac(void);
void ads1294_get_data(ads1298_info_t* p_info); // void ads1294_get_data(ble_exg_t *p_exg, uint8_t active_chs);
void ads1296_get_data(ads1298_info_t* p_info); // void ads1296_get_data(ble_exg_t *p_exg, uint8_t active_chs);
void ads1298_get_data(ads1298_info_t* p_info); // void ads1298_get_data(ble_exg_t *p_exg, uint8_t active_chs);
void ads1298_get_data_fast(ads1298_info_t* p_info);
uint16_t ads1298_sampling_rate(ads1298_info_t* p_info);
void ads1298_set_data_buffer_length(ads1298_info_t* p_info);
#endif // ADS1298_H_ #endif // ADS1298_H_

32
base/types.h Normal file
View File

@ -0,0 +1,32 @@
#ifndef __TYPES_H
#define __TYPES_H
#include <stdint.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
typedef int8_t s8;
typedef int16_t s16;
typedef int32_t s32;
typedef int64_t s64;
typedef s8 b8;
typedef s16 b16;
typedef s32 b32;
typedef float f32;
#define Create_String(s) ((String){.count=(sizeof(s)-1), .data=(s)})
typedef struct {
s32 count;
u8* data;
} String;
String create_string(char* data);
#endif

52
base/usb_logging.h Normal file
View File

@ -0,0 +1,52 @@
#ifndef USB_LOGGING_H_
#define USB_LOGGING_H_
// Helper code for saving data to USB
#include "base/types.h"
// Global log buffer and usage:
static u8 log_buffer[4096];
static s32 m_log_usage = 0;
// Sending logs
static bool m_send_logs = 0;
static s32 m_log_buffer_send_index = 0;
static volatile bool tx_complete = true;
static bool full_tx_complete = false;
// Functions for adding to and resetting buffer:
#define LOG_MODE 0
// Mode 0: do not wrap around, do not append to buffer
// Mode 1: wrap around to beginning.
// FOR STRING LITERALS ONLY
// #define JIIM_LOG_USB(strlit) add_to_log_buffer(Create_String(strlit))
// Dynamic strings
static u8 sprint_buffer[128];
static s32 sprint_length;
// #TODO: I need to append a \n here
#define JIIM_LOG(fmt, ...) \
sprint_length = sprintf(sprint_buffer, fmt, ##__VA_ARGS__); \
add_format_string_to_log_buffer()
void reset_log_buffer(void);
void add_to_log_buffer(String str);
void add_format_string_to_log_buffer(void);
/*
void send_usb_log(String str) {
// Zero buffer:
//memset(str.data, 0, NRF_DRV_USBD_EPSIZE);
// Copy string:
//memcpy(m_tx_buffer, str.data, str.count);
app_usbd_cdc_acm_write(&m_app_cdc_acm, str.data, str.count);
}
void log_usb(char* data) {
send_usb_log(create_string(data));
}
*/
#endif // USB_LOGGING_H_

425
main.c
View File

@ -1,7 +1,5 @@
#include <stdint.h> // Nordic drivers and application code:
#include <stdbool.h> // Note: see throughput testing in musa_usbd_cdc_acm
#include <stddef.h>
#include <stdio.h>
#include "nrf.h" #include "nrf.h"
#include "nrf_drv_usbd.h" #include "nrf_drv_usbd.h"
@ -24,35 +22,34 @@
#include "nrf_log_ctrl.h" #include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h" #include "nrf_log_default_backends.h"
#include "custom_board.h" // **** jiim base code ****
#include "base/types.h"
#include "base/usb_logging.h"
static enum recording_mode_t recording_mode = RECORDING_MODE_DISABLED; // **** Sensor driver APIs ****
#define ADS1298 0
#define ADS1292 0
#if ADS1298 #if ADS1298
#include "ads1298.h" #include "ads1298.h"
#include "nrf_gpio.h"
#include "nrf_drv_gpiote.h" #include "nrf_drv_gpiote.h"
static bool drdy_flag = false;
ads1298_info_t m_info;
#endif #endif
// #TEMP: This should be generated dynamically maybe? #if ADS1292
char g_Peripheral_Info[] = "ADS1298|"; #include "ads1292.c"
char g_WhoAmI[] = "multimodal_cv_dev0_ecg"; #endif
uint8_t g_HWFW_Ver[] = {1,0,0,1}; // HW Maj, HW Min, FW Maj, FW Min
static volatile bool run_throughput_test = false;
static char usb_send_buffer[NRF_DRV_USBD_EPSIZE * 2]; // * 2 is just for safety margin in case we overrun!
static uint8_t usb_send_buffer_offset = 0;
#define READ_SIZE 64
static char usb_read_buffer[READ_SIZE];
/**
* @brief Enable power USB detection
*
* Configure if example supports USB port connection
*/
#ifndef USBD_POWER_DETECTION #ifndef USBD_POWER_DETECTION
#define USBD_POWER_DETECTION true #define USBD_POWER_DETECTION true
#endif #endif
static void cdc_acm_user_ev_handler(app_usbd_class_inst_t const * p_inst, static void cdc_acm_user_ev_handler(app_usbd_class_inst_t const * p_inst,
app_usbd_cdc_acm_user_event_t event); app_usbd_cdc_acm_user_event_t event);
@ -64,6 +61,9 @@ static void cdc_acm_user_ev_handler(app_usbd_class_inst_t const * p_inst,
#define CDC_ACM_DATA_EPOUT NRF_DRV_USBD_EPOUT1 #define CDC_ACM_DATA_EPOUT NRF_DRV_USBD_EPOUT1
/**
* @brief CDC_ACM class instance
* */
APP_USBD_CDC_ACM_GLOBAL_DEF(m_app_cdc_acm, APP_USBD_CDC_ACM_GLOBAL_DEF(m_app_cdc_acm,
cdc_acm_user_ev_handler, cdc_acm_user_ev_handler,
CDC_ACM_COMM_INTERFACE, CDC_ACM_COMM_INTERFACE,
@ -73,196 +73,33 @@ APP_USBD_CDC_ACM_GLOBAL_DEF(m_app_cdc_acm,
CDC_ACM_DATA_EPOUT, CDC_ACM_DATA_EPOUT,
APP_USBD_CDC_COMM_PROTOCOL_AT_V250); APP_USBD_CDC_COMM_PROTOCOL_AT_V250);
__STATIC_INLINE void reset_buffer_count(uint8_t *buffer_start) { #define READ_SIZE 1
buffer_start[1] = 0;
}
__STATIC_INLINE void increment_packet(uint8_t *buffer_start) { static char m_rx_buffer[READ_SIZE];
buffer_start[1] += 1; static char m_tx_buffer[NRF_DRV_USBD_EPSIZE];
} static bool m_send_flag = 0;
void reset_counters(void) {
#if ADS1298
m_info.usb_buffer_count = ADS1298_PACKET_OFFSET;
reset_buffer_count(m_info.usb_buffer);
#if ADS1298_STATS
m_info.drdy_trigger_count = 0;
m_info.seconds_elapsed = 0;
m_info.bytes_sent_usb = 0;
#endif
// #TODO: elapsed time Milliseconds (need last second timer).
#endif
}
// #DO NOT USE THIS. IT BREAKS THE PACKET FORMAT. USE
// void usb_send_message_1byte(uint8_t message) {
// usb_send_buffer[0] = message;
// ret_code_t ret = app_usbd_cdc_acm_write(&m_app_cdc_acm, usb_send_buffer, 1);
// NRF_LOG_INFO("[push]Writing message of length %d, ret: %d", 1, ret);
// }
// 1. For mushing together small messages into a 64-byte packet:
void usb_send_append_message(uint8_t message_prefix, uint8_t* message, uint8_t message_length) {
usb_send_buffer[usb_send_buffer_offset] = message_prefix;
usb_send_buffer[usb_send_buffer_offset + 1] = message_length + 2;
memcpy(&usb_send_buffer[usb_send_buffer_offset + 2], message, message_length);
usb_send_buffer_offset += (2 + message_length);
if (usb_send_buffer_offset >= 64) { // end of buffer
NRF_LOG_INFO("[WARNING] exceeded limit of usb_send_buffer\n");
usb_send_buffer_offset = 64;
}
}
// 2. For pushing all messages queued with usb_send_append_message
void usb_send_push(void) {
ret_code_t ret = app_usbd_cdc_acm_write(&m_app_cdc_acm, usb_send_buffer, usb_send_buffer_offset);
NRF_LOG_INFO("[push]Writing message of length %d, ret: %d", usb_send_buffer_offset, ret);
usb_send_buffer_offset = 0; // reset.
}
// 3. For sending two-byte prefixed messages
void usb_send_push_ex(uint8_t message_prefix, uint8_t message_part_two, uint8_t* message, uint8_t message_length) {
usb_send_buffer[0] = message_prefix;
usb_send_buffer[1] = message_part_two;
usb_send_buffer[2] = message_length + 3;
memcpy(&usb_send_buffer[3], message, message_length);
ret_code_t ret = app_usbd_cdc_acm_write(&m_app_cdc_acm, usb_send_buffer, message_length + 3);
NRF_LOG_INFO("[push ex]Writing message of length %d, ret: %d", message_length + 3, ret);
}
// length is always `READ_SIZE`
void write_ic_settings(uint8_t* new_packet) {
switch (SECOND_NIBBLE(new_packet[0])) {
case TN_IC_ADS1298: {
// #TODO: &new_packet[1]
#if ADS1298
ads1298_stop_rdatac();
NRF_LOG_INFO("Writing new ADS1298 registers:");
NRF_LOG_HEXDUMP_INFO(&new_packet[1], ADS1298_REGISTER_COUNT);
memcpy(m_info.registers, &new_packet[1], ADS1298_REGISTER_COUNT);
ads1298_update_registers(&m_info);
ads1298_set_data_buffer_length(&m_info);
ads1298_start_rdatac();
ads1298_standby();
// #TODO: readback registers into m_info.registers to confirm correct write.
uint8_t message[] = {0x00}; // LENGTH OF ZERO.
usb_send_push_ex(CTRL_ACK_WRITE_IC_REGISTER, IC_ID_ADS1298, message, strlen(message));
#endif
} break;
default:
break;
}
}
void read_ic_settings(uint8_t* new_packet) {
switch (SECOND_NIBBLE(new_packet[0])) {
case TN_IC_ADS1298: {
// #NOTE: you will not be able to read registers while in RDATAC mode.
// ads1298_check_id(&m_info);
ads1298_stop_rdatac();
// read all registers into m_info.registers
ads1298_readback_registers(&m_info);
// Send back over USB.
usb_send_push_ex(CTRL_REGISTER_READBACK, IC_ID_ADS1298,
m_info.registers, ADS1298_REGISTER_COUNT);
ads1298_start_rdatac();
ads1298_standby();
} break;
default:
break;
}
}
// length is always `READ_SIZE`
static void process_new_packet(uint8_t* new_packet) {
switch (FIRST_NIBBLE(new_packet[0])) {
case CN_WRITE_IC_REGS: {
write_ic_settings(new_packet);
} break;
case CN_READ_IC_REGS: {
read_ic_settings(new_packet);
} break;
case CN_STREAM_CONTROL: {
if (SECOND_NIBBLE(new_packet[0]) == TN_STREAM_START) {
recording_mode = RECORDING_MODE_ALL;
#if ADS1298
if (m_info.state == 0) {
m_info.state = 1;
// ads1298_update_registers(&m_info);
// ads1298_set_data_buffer_length(&m_info);
ads1298_wakeup();
NRF_LOG_INFO("[ADS129x] Active channels: 0x%X", m_info.active_chs);
}
#endif
reset_counters();
}
if (SECOND_NIBBLE(new_packet[0]) == TN_STREAM_STOP) {
recording_mode = RECORDING_MODE_DISABLED;
#if ADS1298
if (m_info.state == 1) {
m_info.state = 0;
ads1298_standby();
}
#endif
#if ADS1298_STATS
NRF_LOG_INFO("Bytes sent via USB: %lu\n", m_info.bytes_sent_usb);
#endif
reset_counters();
}
if (SECOND_NIBBLE(new_packet[0]) == TN_STREAM_REQUEST_PERIPHERAL_INFO) {
// #TODO: we should assert that the length of these messages does not exceed the packet
// size!
usb_send_append_message(CTRL_STAT_INFO_PERIPHERALS, g_Peripheral_Info, strlen(g_Peripheral_Info));
usb_send_append_message(CTRL_STAT_INFO_WHO_AM_I, g_WhoAmI, strlen(g_WhoAmI));
usb_send_append_message(CTRL_STAT_INFO_HW_FW_VERSION, g_HWFW_Ver, sizeof(g_HWFW_Ver));
usb_send_push();
}
if (SECOND_NIBBLE(new_packet[0]) == TN_STREAM_REQUEST_BATTERY_LEVEL) {
// #NOTE: Will not use. This is not a battery-powered device. (I mean, it can
// be, but it's also wired, so who cares.)
// Just return some constant.
}
} break;
case CN_MISC_CONTROLS: {
if (SECOND_NIBBLE(new_packet[0]) == TN_MISC_THROUGHPUT_TEST) { // 0xEF
NRF_LOG_INFO("Starting throughput test!");
run_throughput_test = true;
}
if (SECOND_NIBBLE(new_packet[0]) == TN_MISC_RTT_REQUEST) {
uint8_t message[] = {0x00}; // LENGTH OF ZERO.
usb_send_append_message(CTRL_ACK_RTT_REQUEST, message, strlen(message));
usb_send_push();
}
} break;
default:
break;
}
}
/**
* @brief User event handler @ref app_usbd_cdc_acm_user_ev_handler_t (headphones)
* */
static void cdc_acm_user_ev_handler(app_usbd_class_inst_t const * p_inst, static void cdc_acm_user_ev_handler(app_usbd_class_inst_t const * p_inst,
app_usbd_cdc_acm_user_event_t event) { app_usbd_cdc_acm_user_event_t event) {
app_usbd_cdc_acm_t const * p_cdc_acm = app_usbd_cdc_acm_class_get(p_inst); app_usbd_cdc_acm_t const * p_cdc_acm = app_usbd_cdc_acm_class_get(p_inst);
switch (event) { switch (event) {
case APP_USBD_CDC_ACM_USER_EVT_PORT_OPEN: { case APP_USBD_CDC_ACM_USER_EVT_PORT_OPEN: {
/*Setup first transfer*/ /*Setup first transfer*/
ret_code_t ret = app_usbd_cdc_acm_read(&m_app_cdc_acm, usb_read_buffer, READ_SIZE); ret_code_t ret = app_usbd_cdc_acm_read(&m_app_cdc_acm,
m_rx_buffer,
READ_SIZE);
UNUSED_VARIABLE(ret); UNUSED_VARIABLE(ret);
break; break;
} }
case APP_USBD_CDC_ACM_USER_EVT_PORT_CLOSE: case APP_USBD_CDC_ACM_USER_EVT_PORT_CLOSE:
break; break;
case APP_USBD_CDC_ACM_USER_EVT_TX_DONE: case APP_USBD_CDC_ACM_USER_EVT_TX_DONE:
tx_complete = true;
if (m_send_logs && full_tx_complete) { reset_log_buffer(); }
break; break;
case APP_USBD_CDC_ACM_USER_EVT_RX_DONE: { case APP_USBD_CDC_ACM_USER_EVT_RX_DONE: {
ret_code_t ret; ret_code_t ret;
@ -270,13 +107,23 @@ static void cdc_acm_user_ev_handler(app_usbd_class_inst_t const * p_inst,
do { do {
/*Get amount of data transfered*/ /*Get amount of data transfered*/
size_t size = app_usbd_cdc_acm_rx_size(p_cdc_acm); size_t size = app_usbd_cdc_acm_rx_size(p_cdc_acm);
NRF_LOG_INFO("RX: size: %lu char: %c", size, m_rx_buffer[0]);
if (m_rx_buffer[0] == 0) {
m_send_flag = false;
m_send_logs = false;
}
if (m_rx_buffer[0] == 1) {
m_send_flag = true;
}
if (m_rx_buffer[0] == 2) {
m_send_logs = true;
}
NRF_LOG_INFO("RX[size:%lu] [0]: 0x%X", size, usb_read_buffer[0]);
process_new_packet(usb_read_buffer);
/* Fetch data until internal buffer is empty */ /* Fetch data until internal buffer is empty */
ret = app_usbd_cdc_acm_read(&m_app_cdc_acm, usb_read_buffer, READ_SIZE); ret = app_usbd_cdc_acm_read(&m_app_cdc_acm,
m_rx_buffer,
READ_SIZE);
} while (ret == NRF_SUCCESS); } while (ret == NRF_SUCCESS);
break; break;
@ -287,7 +134,6 @@ static void cdc_acm_user_ev_handler(app_usbd_class_inst_t const * p_inst,
} }
static void usbd_user_ev_handler(app_usbd_event_type_t event) { static void usbd_user_ev_handler(app_usbd_event_type_t event) {
// #TODO: should reset_counters() somewhere here?
switch (event) { switch (event) {
case APP_USBD_EVT_DRV_SUSPEND: case APP_USBD_EVT_DRV_SUSPEND:
break; break;
@ -318,26 +164,43 @@ static void usbd_user_ev_handler(app_usbd_event_type_t event) {
} }
} }
#if ADS1298 void Send_USB_Logs(void) {
if (!tx_complete) return;
// We should check that the USB data is
s32 bytes_remaining = m_log_usage - m_log_buffer_send_index;
if (bytes_remaining <= 0) {
full_tx_complete = true;
return;
}
app_usbd_cdc_acm_write(&m_app_cdc_acm, &log_buffer[m_log_buffer_send_index], 64);
m_log_buffer_send_index += 64;
tx_complete = false;
}
#if ADS1298 || ADS1292
void drdy_pin_handler(nrfx_gpiote_pin_t pin, nrf_gpiote_polarity_t action) { void drdy_pin_handler(nrfx_gpiote_pin_t pin, nrf_gpiote_polarity_t action) {
UNUSED_PARAMETER(pin); UNUSED_PARAMETER(pin);
UNUSED_PARAMETER(action); UNUSED_PARAMETER(action);
drdy_flag = true; JIIM_LOG("drdy!");
#if ADS1298_STATS // drdy_flag = true;
m_info.drdy_trigger_count += 1;
#endif
} }
#endif
void ads1298_interrupt_setup(void) { #if ADS1298
ads1298_info_t m_info;
void ads1298_init_gpio(void) {
nrf_gpio_cfg_output(ADS1298_PWDN_PIN); nrf_gpio_cfg_output(ADS1298_PWDN_PIN);
nrf_gpio_pin_clear(ADS1298_PWDN_PIN); nrf_gpio_pin_clear(ADS1298_PWDN_PIN);
nrf_gpio_cfg_input(ADS1298_DRDY_PIN, NRF_GPIO_PIN_PULLUP); nrf_gpio_cfg_input(ADS1298_DRDY_PIN, NRF_GPIO_PIN_PULLUP);
// Initialize GPIOTE: // Initialize GPIOTE:
ret_code_t err_code = NRF_SUCCESS; ret_code_t err_code = NRF_SUCCESS;
if (!nrf_drv_gpiote_is_init()) { if (!nrf_drv_gpiote_is_init())
{
err_code = nrf_drv_gpiote_init(); err_code = nrf_drv_gpiote_init();
} }
NRF_LOG_INFO("GPIOTE error code: %d", err_code); JIIM_LOG("GPIOTE error code: %d", err_code);
APP_ERROR_CHECK(err_code); APP_ERROR_CHECK(err_code);
nrfx_gpiote_in_config_t in_config = NRFX_GPIOTE_CONFIG_IN_SENSE_HITOLO(true); nrfx_gpiote_in_config_t in_config = NRFX_GPIOTE_CONFIG_IN_SENSE_HITOLO(true);
in_config.is_watcher = true; in_config.is_watcher = true;
@ -349,38 +212,30 @@ void ads1298_interrupt_setup(void) {
} }
#endif #endif
#if ADS1298_STATS #if ADS1292
APP_TIMER_DEF(ads_timer_id); ads129x_info_t m_info;
#define APP_TIMER_INTERVAL APP_TIMER_TICKS(1000) // 1 second.
static volatile bool ads_timer_timeout = false;
static void ads_timer_timeout_handler(void* p_context) { void ads1292_interrupt_setup(void) {
UNUSED_PARAMETER(p_context); nrf_gpio_cfg_output(ADS1292_PWDN_PIN);
nrf_gpio_pin_clear(ADS1292_PWDN_PIN); // Powers down the ADS1292
ads_timer_timeout = true; nrf_gpio_cfg_input(ADS1292_DRDY_PIN, NRF_GPIO_PIN_PULLUP);
m_info.seconds_elapsed += 1; // Initialize GPIOTE:
ret_code_t err_code = NRF_SUCCESS;
if (!nrf_drv_gpiote_is_init()) {
err_code = nrf_drv_gpiote_init();
}
NRF_LOG_INFO("GPIOTE error code: %d", err_code);
APP_ERROR_CHECK(err_code);
nrfx_gpiote_in_config_t in_config = NRFX_GPIOTE_CONFIG_IN_SENSE_HITOLO(true);
in_config.is_watcher = true;
in_config.pull = NRF_GPIO_PIN_NOPULL;
err_code = nrf_drv_gpiote_in_init(ADS1292_DRDY_PIN, &in_config, drdy_pin_handler);
APP_ERROR_CHECK(err_code);
nrf_drv_gpiote_in_event_enable(ADS1292_DRDY_PIN, true);
ads1292_power_down();
} }
#endif #endif
static void application_timers_start(void) {
#if ADS1298_STATS
ret_code_t err_code;
err_code = app_timer_start(ads_timer_id, APP_TIMER_INTERVAL, NULL);
APP_ERROR_CHECK(err_code);
#endif
}
static void timers_init(void) {
ret_code_t ret = app_timer_init();
APP_ERROR_CHECK(ret);
#if ADS1298_STATS
ret_code_t err_code =
app_timer_create(&ads_timer_id, APP_TIMER_MODE_REPEATED, ads_timer_timeout_handler);
APP_ERROR_CHECK(err_code);
#endif
}
int main(void) { int main(void) {
ret_code_t ret; ret_code_t ret;
static const app_usbd_config_t usbd_config = { static const app_usbd_config_t usbd_config = {
@ -390,8 +245,6 @@ int main(void) {
ret = NRF_LOG_INIT(NULL); ret = NRF_LOG_INIT(NULL);
APP_ERROR_CHECK(ret); APP_ERROR_CHECK(ret);
NRF_LOG_DEFAULT_BACKENDS_INIT(); // Init RTT Backend
ret = nrf_drv_clock_init(); ret = nrf_drv_clock_init();
APP_ERROR_CHECK(ret); APP_ERROR_CHECK(ret);
@ -400,13 +253,14 @@ int main(void) {
// Wait for LFCLK to init. // Wait for LFCLK to init.
while(!nrf_drv_clock_lfclk_is_running()) { } while(!nrf_drv_clock_lfclk_is_running()) { }
timers_init(); ret = app_timer_init();
APP_ERROR_CHECK(ret);
app_usbd_serial_num_generate(); app_usbd_serial_num_generate();
ret = app_usbd_init(&usbd_config); ret = app_usbd_init(&usbd_config);
APP_ERROR_CHECK(ret); APP_ERROR_CHECK(ret);
NRF_LOG_INFO("USBD CDC ACM example started."); // NRF_LOG_INFO("USBD CDC ACM example started.");
app_usbd_class_inst_t const * class_cdc_acm = app_usbd_cdc_acm_class_inst_get(&m_app_cdc_acm); app_usbd_class_inst_t const * class_cdc_acm = app_usbd_cdc_acm_class_inst_get(&m_app_cdc_acm);
ret = app_usbd_class_append(class_cdc_acm); ret = app_usbd_class_append(class_cdc_acm);
@ -416,67 +270,62 @@ int main(void) {
ret = app_usbd_power_events_enable(); ret = app_usbd_power_events_enable();
APP_ERROR_CHECK(ret); APP_ERROR_CHECK(ret);
} else { } else {
NRF_LOG_INFO("No USB power detection enabled\r\nStarting USB now"); JIIM_LOG("No USB power detection enabled\r\nStarting USB now");
app_usbd_enable(); app_usbd_enable();
app_usbd_start(); app_usbd_start();
} }
// Throughput testing:
reset_log_buffer(); // initialize log buffer with `A`
JIIM_LOG("Hello world!");
JIIM_LOG("HELLO WORLD %d FORMATTED", 2);
JIIM_LOG("sizeof(log_buffer): %d", sizeof(log_buffer));
// Init peripherals: JIIM_LOG("Hello, I am a string2");
#if ADS1292
ads1292_interrupt_setup();
ads1292_initialize(&m_info);
#endif
#if ADS1298 #if ADS1298
ads1298_interrupt_setup(); ads1298_init_gpio();
nrf_delay_ms(200);
memset(&m_info, 0, sizeof(ads1298_info_t));
ads1298_initialize(&m_info); ads1298_initialize(&m_info);
#endif #endif
memset(usb_send_buffer, 0x41, NRF_DRV_USBD_EPSIZE); // #TEMP #if ADS1292 || ADS1298
if (m_info.nChs > 0) {
reset_counters(); JIIM_LOG("Number of channels available: %d", m_info.nChs);
} else {
// #TEMP: application_timers_start JIIM_LOG("ERROR: ADS129x NOT DETECTED!");
application_timers_start(); }
#endif
while (true) { while (true) {
while (app_usbd_event_queue_process()) { /* Nothing to do */ } while (app_usbd_event_queue_process()) {/* Nothing to do */}
if (recording_mode == RECORDING_MODE_ALL) { //if (m_send_flag) {
// if (recording_mode & drdy_flag) { // may be faster if we're just using ADS1298 // static int frame_counter;
#if ADS1298
if (drdy_flag) {
drdy_flag = false;
#if ADS1298_STATS
if (ads_timer_timeout) {
ads_timer_timeout = false;
//NRF_LOG_INFO("[ADS1298] Collected %lu samples in %d seconds", m_info.drdy_trigger_count, m_info.seconds_elapsed);
NRF_LOG_INFO("[ADS1298] DR: %lu", m_info.drdy_trigger_count / m_info.seconds_elapsed);
}
#endif
// :ADS1298_FAST_PATH // size_t size = sprintf(m_tx_buffer, "Hello USB CDC FA demo: %u\r\n", frame_counter);
ads1298_get_data_fast(&m_info);
if (m_info.usb_buffer_count >= m_info.usb_buffer_size_max) {
m_info.usb_buffer_count = ADS1298_PACKET_OFFSET;
app_usbd_cdc_acm_write(&m_app_cdc_acm, m_info.usb_buffer, m_info.usb_buffer_size_max);
#if ADS1298_STATS
m_info.bytes_sent_usb += m_info.usb_buffer_size_max;
#endif
increment_packet(m_info.usb_buffer);
// NRF_LOG_INFO("Current time tick: %lu", app_timer_cnt_get());
}
}
#endif
}
if (run_throughput_test) { // ret = app_usbd_cdc_acm_write(&m_app_cdc_acm, m_tx_buffer, size);
app_usbd_cdc_acm_write(&m_app_cdc_acm, usb_send_buffer, NRF_DRV_USBD_EPSIZE); // if (ret == NRF_SUCCESS) { ++frame_counter; }
}
// app_usbd_cdc_acm_write(&m_app_cdc_acm, m_tx_buffer, size);
// send_usb_log(hello_string);
//log_usb("TestTestTest");
// count += 1;
//}
if (m_send_logs) { Send_USB_Logs(); }
UNUSED_RETURN_VALUE(NRF_LOG_PROCESS()); UNUSED_RETURN_VALUE(NRF_LOG_PROCESS());
/* Sleep CPU only if there was no interrupt since last loop processing */ /* Sleep CPU only if there was no interrupt since last loop processing */
__WFE(); __WFE();
} }
} }
/** @} */

View File

@ -1,92 +0,0 @@
#ifndef CUSTOM_BOARD_H
#define CUSTOM_BOARD_H
#define NRF52840_BREAKOUT_BOARD 1
#define ADS1298 1
#if ADS1298
#define ADS1298_STATS 0
#endif
// Testing with nRF52840:
#if NRF52840_BREAKOUT_BOARD
#define ADS1298_DRDY_PIN 11
#define ADS1298_MISO_PIN 12
#define ADS1298_SCK_PIN 13
#define ADS1298_CS_PIN 14
// I don't think you're supposed to tie PWDN and reset together on ADS1298
#define ADS1298_PWDN_PIN 15
#define ADS1298_MOSI_PIN 16
// This is the packet format for data received over USB:
// [CN:4bit][TN:4bit][..data]
// COMMAND NIBBLES (4-bit definitions), CN_
#define CN_WRITE_IC_REGS 0x8 // 0b1000
#define CN_READ_IC_REGS 0x4 // 0b0100
#define CN_STREAM_CONTROL 0xB // 0b1011
#define CN_MISC_CONTROLS 0xE // 0b1110
// CTRL_REQUEST_BATTERY_LEVEL :: 0xBB
// TARGET NIBBLES (4-bit definitions)
#define TN_IC_ADS1298 0x1
#define TN_IC_EXT 0xF // Extended .. check the next byte!
#define TN_STREAM_START 0x2
#define TN_STREAM_STOP 0xF
#define TN_STREAM_REQUEST_BATTERY_LEVEL 0xB
// #define TN_STREAM_REQUEST_WHO_AM_I 0xD
#define TN_STREAM_REQUEST_PERIPHERAL_INFO 0xE
#define TN_MISC_THROUGHPUT_TEST 0xF
#define TN_MISC_RTT_REQUEST 0x1
// #################### RESPONSE CODES ####################
// #NOTE: 0x01 and 0x02 are reserved (for now) for legacy BLE reasons. I should deprecate and
// remove these.
#define CTRL_STAT_INFO_STRING 0x01
#define CTRL_STAT_INFO_BYTES_SENT 0x02
#define CTRL_STAT_INFO_PERIPHERALS 0x03
#define CTRL_STAT_INFO_HW_FW_VERSION 0x04
#define CTRL_STAT_INFO_WHO_AM_I 0x05
#define CTRL_STAT_INFO_BATTERY_LEVEL 0xB1
// For register readback, the following bytes will be ic-dependent, as
// some devices have more than 62 bytes worth of registers, so it may
// need to be split up into pages.
#define CTRL_REGISTER_READBACK 0xC8
#define CTRL_ACK_WRITE_IC_REGISTER 0xDF
#define CTRL_ACK_RTT_REQUEST 0xE0
// %%% IC Identifiers %%%
// I want a SINGLE table for 8-bit IDs corresponding to different ICs
// These values can be anything from 0x06:0xFF, as long as it doesn't conflict
// with any of the reserved ones from above.
// If the USB packet leads [0] with the ID, then it is a data packet
// in the typical format of [ID, Serial, ...data] where the length of data
// should be statically determined in advance.
// For example, with the ADS1298, the packet length is determined based on the
// channel count (see: ads1298_set_data_buffer_length for more details)
// #define RESPONSE_PACKET 0x00
#define IC_ID_ADS1298 0xD1
#define IC_ID_EXT 0xFF // see next byte for extended table
#define FIRST_NIBBLE(x) ((x >> 4) & 0xF)
#define SECOND_NIBBLE(x) (x & 0xF)
// For IC controls, we want to prefix the registers with the length: [u16???]
// Data format will be different for each device.
// For ADS1298
// [CN:4bit][TN:4bit][length:u8][..data]
// For other device with 1 register read/write at a time
// [CN:4bit][TN:4bit][RegisterID][RegisterData] for single register
#endif // NRF52840_BREAKOUT_BOARD
enum recording_mode_t {
RECORDING_MODE_DISABLED = 0,
RECORDING_MODE_ALL = 1
};
#endif // CUSTOM_BOARD_H

View File

@ -1628,7 +1628,7 @@
// <i> This may limit throughput if a lot of binary data is sent, but in terminal mode operation it makes sure that the data is always displayed right after it is sent. // <i> This may limit throughput if a lot of binary data is sent, but in terminal mode operation it makes sure that the data is always displayed right after it is sent.
#ifndef APP_USBD_CDC_ACM_ZLP_ON_EPSIZE_WRITE #ifndef APP_USBD_CDC_ACM_ZLP_ON_EPSIZE_WRITE
#define APP_USBD_CDC_ACM_ZLP_ON_EPSIZE_WRITE 0 #define APP_USBD_CDC_ACM_ZLP_ON_EPSIZE_WRITE 1
#endif #endif
// </h> // </h>
@ -1771,7 +1771,7 @@
// <e> NRF_LOG_BACKEND_RTT_ENABLED - nrf_log_backend_rtt - Log RTT backend // <e> NRF_LOG_BACKEND_RTT_ENABLED - nrf_log_backend_rtt - Log RTT backend
//========================================================== //==========================================================
#ifndef NRF_LOG_BACKEND_RTT_ENABLED #ifndef NRF_LOG_BACKEND_RTT_ENABLED
#define NRF_LOG_BACKEND_RTT_ENABLED 1 #define NRF_LOG_BACKEND_RTT_ENABLED 0
#endif #endif
// <o> NRF_LOG_BACKEND_RTT_TEMP_BUFFER_SIZE - Size of buffer for partially processed strings. // <o> NRF_LOG_BACKEND_RTT_TEMP_BUFFER_SIZE - Size of buffer for partially processed strings.
// <i> Size of the buffer is a trade-off between RAM usage and processing. // <i> Size of the buffer is a trade-off between RAM usage and processing.
@ -1780,7 +1780,7 @@
// <i> longer one will be fragmented. // <i> longer one will be fragmented.
#ifndef NRF_LOG_BACKEND_RTT_TEMP_BUFFER_SIZE #ifndef NRF_LOG_BACKEND_RTT_TEMP_BUFFER_SIZE
#define NRF_LOG_BACKEND_RTT_TEMP_BUFFER_SIZE 256 #define NRF_LOG_BACKEND_RTT_TEMP_BUFFER_SIZE 64
#endif #endif
// <o> NRF_LOG_BACKEND_RTT_TX_RETRY_DELAY_MS - Period before retrying writing to RTT // <o> NRF_LOG_BACKEND_RTT_TX_RETRY_DELAY_MS - Period before retrying writing to RTT
@ -3092,7 +3092,7 @@
#ifndef SPI0_USE_EASY_DMA #ifndef SPI0_USE_EASY_DMA
#define SPI0_USE_EASY_DMA 0 #define SPI0_USE_EASY_DMA 1
#endif #endif
// </e> // </e>
@ -3114,7 +3114,7 @@
// <e> SPI2_ENABLED - Enable SPI2 instance // <e> SPI2_ENABLED - Enable SPI2 instance
//========================================================== //==========================================================
#ifndef SPI2_ENABLED #ifndef SPI2_ENABLED
#define SPI2_ENABLED 0 #define SPI2_ENABLED 1
#endif #endif
// <q> SPI2_USE_EASY_DMA - Use EasyDMA // <q> SPI2_USE_EASY_DMA - Use EasyDMA

View File

@ -44,9 +44,9 @@
<folder Name="Application"> <folder Name="Application">
<file file_name="../../../ads1298.c" /> <file file_name="../../../ads1298.c" />
<file file_name="../../../ads1298.h" /> <file file_name="../../../ads1298.h" />
<file file_name="../config/custom_board.h" />
<file file_name="../../../main.c" /> <file file_name="../../../main.c" />
<file file_name="../config/sdk_config.h" /> <file file_name="../config/sdk_config.h" />
<file file_name="../../../usb_logging.c" />
</folder> </folder>
<folder Name="Board Definition"> <folder Name="Board Definition">
<file file_name="../../../../../../components/boards/boards.c" /> <file file_name="../../../../../../components/boards/boards.c" />

View File

@ -1,24 +0,0 @@
@echo off
echo building project with emBuild:
emBuild -time -rebuild -nostderr -config "Release" -solution "Multimodal_CV_USB_ADS1298R_pca10056" Multimodal_CV_USB_ADS1298R_pca10056.emProject
IF ERRORLEVEL 1 (
echo Building solution failed.
echo.
exit /b 1
)
echo build success.
nrfjprog --program Output\Release\Exe\Multimodal_CV_USB_ADS1298R_pca10056.hex --chiperase --verify --reset
IF ERRORLEVEL 1 (
echo Flashing target device failed.
echo.
exit /b 1
)
echo flash success.
rem "C:\Program Files\SEGGER\JLink_V810f\JLinkRTTViewer.exe" --autoconnect -d "NRF52840_XXAA"
rem IF ERRORLEVEL 1 (
rem echo J-Link RTT Viewer failed to launch.
rem echo.
rem exit /b 1
rem )

View File

@ -1,24 +0,0 @@
@echo off
echo building project with emBuild:
emBuild -time -rebuild -nostderr -config "Debug" -solution "Multimodal_CV_USB_ADS1298R_pca10056" Multimodal_CV_USB_ADS1298R_pca10056.emProject
IF ERRORLEVEL 1 (
echo Building solution failed.
echo.
exit /b 1
)
echo build success.
nrfjprog --program Output\Debug\Exe\Multimodal_CV_USB_ADS1298R_pca10056.hex --chiperase --verify --reset
IF ERRORLEVEL 1 (
echo Flashing target device failed.
echo.
exit /b 1
)
echo flash success.
"C:\Program Files\SEGGER\JLink_V810f\JLinkRTTViewer.exe" --autoconnect -d "NRF52840_XXAA"
IF ERRORLEVEL 1 (
echo J-Link RTT Viewer failed to launch.
echo.
exit /b 1
)

29
usb_logging.c Normal file
View File

@ -0,0 +1,29 @@
#include "base/usb_logging.h"
void reset_log_buffer(void) {
// If debug, then memset buffer
memset(log_buffer, 0, sizeof(log_buffer));
m_log_usage = 0;
m_log_buffer_send_index = 0;
tx_complete = true;
full_tx_complete = false;
}
void add_to_log_buffer(String str) {
// Bounds check the buffer:
if (m_log_usage + str.count >= sizeof(log_buffer)) {
// Failure!.. How to handle? Turn on LEDs?
return; // Do not add to buffer
}
memcpy(&log_buffer[m_log_usage], str.data, str.count);
m_log_usage += str.count;
}
// #TODO: Inline
void add_format_string_to_log_buffer(void) {
// Replace null terminator with \n where required.
sprint_buffer[sprint_length] = '\n';
String s = {sprint_length+1, sprint_buffer};
add_to_log_buffer(s);
}